"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

Overview

bandit-nmt

THIS REPO DEMONSTRATES HOW TO INTEGRATE A POLICY GRADIENT METHOD INTO NMT. FOR A STATE-OF-THE-ART NMT CODEBASE, VISIT simple-nmt.

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-decoder model and benchmarks the combination under simulated noisy rewards.

Requirements:

  • Python 3.6
  • PyTorch 0.2

NOTE: as of Sep 16 2017, the code got 2x slower when I upgraded to PyTorch 2.0. This is a known issue and PyTorch is fixing it.

IMPORTANT: Set home directory (otherwise scripts will not run correctly):

> export BANDIT_HOME=$PWD
> export DATA=$BANDIT_HOME/data
> export SCRIPT=$BANDIT_HOME/scripts

Data extraction

Download pre-processing scripts

> cd $DATA/scripts
> bash download_scripts.sh

For German-English

> cd $DATA/en-de
> bash extract_data_de_en.sh

NOTE: train_2014 and train_2015 highly overlap. Please be cautious when using them for other projects.

Data should be ready in $DATA/en-de/prep

TODO: Chinese-English needs segmentation

Data pre-processing

> cd $SCRIPT
> bash make_data.sh de en

Pretraining

Pretrain both actor and critic

> cd $SCRIPT
> bash pretrain.sh en-de $YOUR_LOG_DIR

See scripts/pretrain.sh for more details.

Pretrain actor only

> cd $BANDIT_HOME
> python train.py -data $YOUR_DATA -save_dir $YOUR_SAVE_DIR -end_epoch 10

Reinforcement training

> cd $BANDIT_HOME

From scratch

> python train.py -data $YOUR_DATA -save_dir $YOUR_SAVE_DIR -start_reinforce 10 -end_epoch 100 -critic_pretrain_epochs 5

From a pretrained model

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -save_dir $YOUR_SAVE_DIR -start_reinforce -1 -end_epoch 100 -critic_pretrain_epochs 5

Perturbed rewards

For example, use thumb up/thump down reward:

> cd $BANDIT_HOME
> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -save_dir $YOUR_SAVE_DIR -start_reinforce -1 -end_epoch 100 -critic_pretrain_epochs 5 -pert_func bin -pert_param 1

See lib/metric/PertFunction.py for more types of function.

Evaluation

> cd $BANDIT_HOME

On heldout sets (heldout BLEU):

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -eval -save_dir .

On bandit set (per-sentence BLEU):

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -eval_sample -save_dir .
Owner
Khanh Nguyen
PhD student in Machine Learning student at University of Maryland, College Park
Khanh Nguyen
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022