Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Overview

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms

This repository contains implementations of various off-policy multi-agent reinforcement learning (MARL) algorithms.

Authors: Akash Velu and Chao Yu

Algorithms supported:

  • MADDPG (MLP and RNN)
  • MATD3 (MLP and RNN)
  • QMIX (MLP and RNN)
  • VDN (MLP and RNN)

Environments supported:

1. Usage

WARNING #1: by default all experiments assume a shared policy by all agents i.e. there is one neural network shared by all agents

WARNING #2: only QMIX and MADDPG are thoroughly tested; however,our VDN and MATD3 implementations make small modifications to QMIX and MADDPG, respectively. We display results using our implementation here.

All core code is located within the offpolicy folder. The algorithms/ subfolder contains algorithm-specific code for all methods. RMADDPG and RMATD3 refer to RNN implementationso of MADDPG and MATD3, and mQMIX and mVDN refer to MLP implementations of QMIX and VDN. We additionally support prioritized experience replay (PER).

  • The envs/ subfolder contains environment wrapper implementations for the MPEs and SMAC.

  • Code to perform training rollouts and policy updates are contained within the runner/ folder - there is a runner for each environment.

  • Executable scripts for training with default hyperparameters can be found in the scripts/ folder. The files are named in the following manner: train_algo_environment.sh. Within each file, the map name (in the case of SMAC and the MPEs) can be altered.

  • Python training scripts for each environment can be found in the scripts/train/ folder.

  • The config.py file contains relevant hyperparameter and env settings. Most hyperparameters are defaulted to the ones used in the paper; however, please refer to the appendix for a full list of hyperparameters used.

2. Installation

Here we give an example installation on CUDA == 10.1. For non-GPU & other CUDA version installation, please refer to the PyTorch website.

# create conda environment
conda create -n marl python==3.6.1
conda activate marl
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
# install on-policy package
cd on-policy
pip install -e .

Even though we provide requirement.txt, it may have redundancy. We recommend that the user try to install other required packages by running the code and finding which required package hasn't installed yet.

2.1 Install StarCraftII 4.10

unzip SC2.4.10.zip
# password is iagreetotheeula
echo "export SC2PATH=~/StarCraftII/" > ~/.bashrc

2.2 Install MPE

# install this package first
pip install seaborn

There are 3 Cooperative scenarios in MPE:

  • simple_spread
  • simple_speaker_listener, which is 'Comm' scenario in paper
  • simple_reference

3.Train

Here we use train_mpe_maddpg.sh as an example:

cd offpolicy/scripts
chmod +x ./train_mpe_maddpg.sh
./train_mpe_maddpg.sh

Local results are stored in subfold scripts/results. Note that we use Weights & Bias as the default visualization platform; to use Weights & Bias, please register and login to the platform first. More instructions for using Weights&Bias can be found in the official documentation. Adding the --use_wandb in command line or in the .sh file will use Tensorboard instead of Weights & Biases.

4. Results

Results for the performance of RMADDPG and QMIX on the Particle Envs and QMIX in SMAC are depicted here. These results are obtained using a normal (not prioitized) replay buffer.

Owner
This is a benchmark of popular multi-agent reinforcement learning algorithms & environments
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022