Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Overview

Joint Learning of 3D Shape Retrieval and Deformation

Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy, Vladimir G. Kim, Minhyuk Sung, Noam Aigerman, Siddhartha Chaudhuri and Leonidas Guibas

CVPR 2021

pic-network

Introduction

We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. Our project page can be found here, and the arXiv version of our paper can be found here.

@inproceedings{uy-joint-cvpr21,
      title = {Joint Learning of 3D Shape Retrieval and Deformation},
      author = {Mikaela Angelina Uy and Vladimir G. Kim and Minhyuk Sung and Noam Aigerman and Siddhartha Chaudhuri and Leonidas Guibas},
      booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2021}
  }

Data download and preprocessing details

Dataset downloads can be found in the links below. These should be extracted in the project home folder.

  1. Raw source shapes are here.

  2. Processed h5 and pickle files are here.

  3. Targets:

    • [Optional] (already processed in h5) point cloud
    • Images: chair, table, cabinet. You also need to modify the correct path for IMAGE_BASE_DIR in the image training and evaluation scripts.
  4. Automatic segmentation (ComplementMe)

    • Source shapes are here.
    • Processed h5 and pickle files are here.

For more details on the pre-processing scripts, please take a look at run_preprocessing.py and generate_combined_h5.py. run_preprocessing.py includes the details on how the connectivity constraints and projection matrices are defined. We use the keypoint_based constraint to define our source model constraints in the paper.

The renderer used throughout the project can be found here. Please modify the paths, including the input and output directories, accordingly at global_variables.py if you want to process your own data.

Pre-trained Models

The pretrained models for Ours and Ours w/ IDO, which uses our joint training approach can be found here. We also included the pretrained models of our structure-aware deformation-only network, which are trained on random source-target pairs used to initialize our joint training.

Evaluation

Example commands to run the evaluation script are as follows. The flags can be changed as desired. --mesh_visu renders the output results into images, remove the flag to disable the rendering. Note that --category is the object category and the values should be set to "chair", "table", "storagefurniture" for classes chair, table and cabinet, respectively.

For point clouds:

python evaluate.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --joint_model=1 --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --mesh_visu=1

python evaluate_recall.py --logdir=ours_ido_pc_chair/ --dump_dir=dump_ours_ido_pc_chair/ --category=chair

For images:

python evaluate_images.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --joint_model=1 --use_connectivity=1 --category=chair --use_src_encoder_retrieval=1 --use_keypoint=1 --mesh_visu=1

python evaluate_images_recall.py --logdir=ours_ido_img_chair/ --dump_dir=dump_ours_ido_img_chair/ --category=chair

Training

  • To train deformation-only networks on random source-target pairs, example commands are as follows:
# For point clouds
python train_deformation_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=chair --use_keypoint=1 --use_symmetry=1

# For images
python train_deformation_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --category=storagefurniture --use_keypoint=1 --use_symmetry=1
  • To train our joint models without IDO (Ours), example commands are as follows:
# For point clouds
python train_region_final.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_deformation=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1

# For images
python train_region_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --use_connectivity=1 --selection=retrieval_candidates --use_src_encoder_retrieval=1 --category=chair --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --model_init=df_chair_img/
  • To train our joint models with IDO (Ours w/ IDO), example commands are as follows:
# For point clouds
python joint_with_icp.py --logdir=log/ --dump_dir=dump/ --to_train=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_pc/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

# For images
python joint_icp_images.py --logdir=log/ --dump_dir=dump/ --to_train=1 --init_joint=1 --loss_function=regression --distance_function=mahalanobis --use_connectivity=1 --use_src_encoder_retrieval=1 --category=chair --model_init=df_chair_img/ --selection=retrieval_candidates --use_keypoint=1 --use_symmetry=1 --init_deformation=1 --use_icp_pp=1 --fitting_loss=l2

Note that our joint training approach is used by setting the flag --selection=retrieval_candidates=1.

Related Work

This work and codebase is related to the following previous work:

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022