A PyTorch-based library for semi-supervised learning

Overview

News

If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]; [email protected]) for more information. We plan to add more SSL algorithms and expand TorchSSL from CV to NLP and Speech.

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

An all-in-one toolkit based on PyTorch for semi-supervised learning (SSL). We implmented 9 popular SSL algorithms to enable fair comparison and boost the development of SSL algorithms.

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling(https://arxiv.org/abs/2110.08263)

Supported algorithms

We support fully supervised training + 9 popular SSL algorithms as listed below:

  1. Pi-Model [1]
  2. MeanTeacher [2]
  3. Pseudo-Label [3]
  4. VAT [4]
  5. MixMatch [5]
  6. UDA [6]
  7. ReMixMatch [7]
  8. FixMatch [8]
  9. FlexMatch [9]

Besides, we implement our Curriculum Pseudo Labeling (CPL) method for Pseudo-Label (Flex-Pseudo-Label) and UDA (Flex-UDA).

Supported datasets

We support 5 popular datasets in SSL research as listed below:

  1. CIFAR-10
  2. CIFAR-100
  3. STL-10
  4. SVHN
  5. ImageNet

Installation

  1. Prepare conda
  2. Run conda env create -f environment.yml

Usage

It is convenient to perform experiment with TorchSSL. For example, if you want to perform FlexMatch algorithm:

  1. Modify the config file in config/flexmatch/flexmatch.yaml as you need
  2. Run python flexmatch --c config/flexmatch/flexmatch.yaml

Customization

If you want to write your own algorithm, please follow the following steps:

  1. Create a directory for your algorithm, e.g., SSL, write your own model file SSl/SSL.py in it.
  2. Write the training file in SSL.py
  3. Write the config file in config/SSL/SSL.yaml

Results

avatar avatar avatar avatar

Citation

If you think this toolkit or the results are helpful to you and your research, please cite our paper:

@article{zhang2021flexmatch},
  title={FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling},
  author={Zhang, Bowen and Wang, Yidong and Hou Wenxin and Wu, Hao and Wang, Jindong and Okumura, Manabu and Shinozaki, Takahiro},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Maintainer

Yidong Wang1, Hao Wu2, Bowen Zhang1, Wenxin Hou1,3, Jindong Wang3

Shinozaki Lab1 http://www.ts.ip.titech.ac.jp/

Okumura Lab2 http://lr-www.pi.titech.ac.jp/wp/

Microsoft Research Asia3

References

[1] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-supervised learning with ladder networks. InNeurIPS, pages 3546–3554, 2015.

[2] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averagedconsistency targets improve semi-supervised deep learning results. InNeurIPS, pages 1195–1204, 2017.

[3] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning methodfor deep neural networks. InWorkshop on challenges in representation learning, ICML,volume 3, 2013.

[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:a regularization method for supervised and semi-supervised learning.IEEE TPAMI, 41(8):1979–1993, 2018.

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and ColinRaffel. Mixmatch: A holistic approach to semi-supervised learning.NeurIPS, page 5050–5060,2019.

[6] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-tation for consistency training.NeurIPS, 33, 2020.

[7] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching andaugmentation anchoring. InICLR, 2019.

[8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.NeurIPS, 33, 2020.

[9] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao wu, Jindong Wang, Okumura Manabu, and Shinozaki Takahiro. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. NeurIPS, 2021.

Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022