Final project for Intro to CS class.

Overview

Financial Analysis Web App

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

1. Project Description

This project is a technical analysis web app made using the Streamlit framework. It allows for a user to perform various analysis methods given a ticker and input parameters. The following indicators are supported: Moving Average, Exponential Moving Average, and Moving Average Convergence Divergence. Additionally, a function to plot Moving Average crossovers of user provided windows is also provided (extra credit?). The app allows for charts with the range of current date and up to 999 days in the past.

2. Project Selection

I chose this project as I enjoy analyzing stock data and wanted to learn more about making a web app with visualizations. Through making this app, I learned the basics of web app development and how to use various frameworks. Additionally, I leveraged Python libraries and APIs to collect stock data. I learned how to develop a data collection and analysis pipeline using a stock data API. Finally, I learned how to apply Classes to a real world application through this project.

3. Future Considerations

If I had an opportunity to redo this project, I would make the visualizations more robust by allowing for user manipulation. Further, in order to improve performance and memory, I would implement a caching feature to prevent unnecessary API calls. These changes would be made in order to improve the quality of the data visualizations and provide a long term solution for this web app given the limitations of the free API. Further, I would use a more robust API as the current one is limited in number of calls and does not adjust historic data for stock split prices.

4. How to Run the Web App

The web app is currently hosted on the Streamlit servers at the following URL:

https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py

No additional setup or changes should be needed in order for the app to run.

How to Use the Web App

To start, enter a ticker in the text box in the sidebar (if the sidebar is not visible, press the arrow in the top left corner). SPY is set as the default value if no input is provided. Next, select the type of Technical Analysis you would like to do. Depending on the selection, a set of parameters will be provided below. Next, provide the delta value, which is the number of days from the current day to collect data on. The application will pull the daily adjusted closing values of the provided ticker. Next, adjust the sliders for the given Technical Analysis selection. There are default values for some TAs. In order to revert them, select a different dropdown item and select the original again.

Please wait ~1 second after hitting 'Run' for the app the update.

API Limitations: due to the limitations of the (free) API, historic stock price data is NOT retroactively updated for stock splits.

NOTE: please enter logical selections, if a specific chart is not possible, the system will not graph the line. Hit 'Run' to create a new graph after updating the inputs.

If an incorrect ticker is provided, the system will display an error message. In order to clear this, provide valid inputs in the sidebar and hit 'Run' again.

5. Challenges

The main challenge of this project was finding and using an appropriate framework. Having tried Flask and Django before settling on Streamlit, the process of creating a web app can be very tedious. Further, creating and setting up the proper logic was difficult as I had to account for various user inputs and selections, without having the entire page crash. One of the biggest issues I faced was a proper implementation of updating the sidebar fields given the user selection. I overcame these issues by implementing a Streamlit form in order to prevent user inputs from conflicting with each other.

6. Cited Sources

The official documentations of the Streamlit, Alpaca, and numpy APIs were extensively used. The Streamlit documentation greatly helped in the formulation of the web app elements and implementation of the logic. The Alpaca Markets API and documentation was used in order to pull market data. Finally, the third resource was used to assist in the creation of moving average plots from stock data.

https://docs.streamlit.io/

https://alpaca.markets/docs/

https://www.datacamp.com/community/tutorials/moving-averages-in-pandas

Description of Files

webApp.py

Main web app driver file. Contains the page objects and form logic.

tradingMethods.py

Class to perform the technical analysis functions. Takes in ticker, deltas, and related features.

config.py

Holds references to API keys.

requirements.txt

Necessary Python libraries.

Owner
Mayur Khanna
Biomedical Informatics M.S. Candidate at University of Chicago | Python | JavaScript | Bioinformatics
Mayur Khanna
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022