DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

Overview

ChemRxiv | [Paper] XXX

DeepStruc

Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and thereby solves a structure from a PDF!

  1. DeepStruc
  2. Getting started (with Colab)
  3. Getting started (own computer)
    1. Install requirements
    2. Simulate data
    3. Train model
    4. Predict
  4. Author
  5. Cite
  6. Acknowledgments
  7. License

We here apply DeepStruc for the structural analysis of a model system of mono-metallic nanoparticle (MMNPs) with seven different structure types and demonstrate the method for both simulated and experimental PDFs. DeepStruc can reconstruct simulated data with an average mean absolute error (MAE) of the atom xyz-coordinates on 0.093 ± 0.058 Å after fitting a contraction/extraction factor, an ADP and a scale parameter. We demonstrate the generative capability of DeepStruc on a dataset of face-centered cubic (fcc), hexagonal closed packed (hcp) and stacking faulted structures, where DeepStruc can recognize the stacking faulted structures as an interpolation between fcc and hcp and construct new structural models based on a PDF. The MAE is in this example 0.030 ± 0.019 Å.

The MMNPs are provided as a graph-based input to the encoder of DeepStruc. We compare DeepStruc with a similar DGM without the graph-based encoder. DeepStruc is able to reconstruct the structures using a smaller dimension of the latent space thus having a better generative capabillity. We also compare DeepStruc with a brute-force modelling approach and a tree-based classification algorithm. The ML models are significantly faster than the brute-force approach, but DeepStruc can furthermore create a latent space from where synthetic structures can be sampled which the tree-based method cannot! The baseline models can be found in other repositories: brute-force, MetalFinder and CVAE. alt text

Getting started (with Colab)

Using DeepStruc on your own PDFs is straightforward and does not require anything installed or downloaded to your computer. Follow the instructions in our Colab notebook and try to play around.

Getting started (own computer)

Follow these step if you want to train DeepStruc and predict with DeepStruc locally on your own computer.

Install requirements

See the install folder.

Simulate data

See the data folder.

Train model

To train your own DeepStruc model simply run:

python train.py

A list of possible arguments or run the '--help' argument for additional information.
If you are intersted in changing the architecture of the model go to train.py and change the model_arch dictionary.

Arg Description Example
-h or --help Prints help message.
-d or --data_dir Directory containing graph training, validation and test data. str -d ./data/graphs
-s or --save_dir Directory where models will be saved. This is also used for loading a learner. str -s bst_model
-r or --resume_model If 'True' the save_dir model is loaded and training is continued. bool -r True
-e or --epochs Number of maximum epochs. int -e 100
-b or --batch_size Number of graphs in each batch. int -b 20
-l or --learning_rate Learning rate. float -l 1e-4
-B or --beta Initial beta value for scaling KLD. float -B 0.1
-i or --beta_increase Increments of beta when the threshold is met. float -i 0.1
-x or --beta_max Highst value beta can increase to. float -x 5
-t or --reconstruction_th Reconstruction threshold required before beta is increased. float -t 0.001
-n or --num_files Total number of files loaded. Files will be split 60/20/20. If 'None' then all files are loaded. int -n 500
-c or --compute Train model on CPU or GPU. Choices: 'cpu', 'gpu16', 'gpu32' and 'gpu64'. str -c gpu32
-L or --latent_dim Number of latent space dimensions. int -L 3

Predict

To predict a MMNP using DeepStruc or your own model on a PDF:

python predict.py

A list of possible arguments or run the '--help' argument for additional information.

Arg Description Example
-h or --help Prints help message.
-d or --data Path to data or data directory. If pointing to data directory all datasets must have same format. str -d data/experimental_PDFs/JQ_S1.gr
-m or --model Path to model. If 'None' GUI will open. str -m ./models/DeepStruc
-n or --num_samples Number of samples/structures generated for each unique PDF. int -n 10
-s or --sigma Sample to '-s' sigma in the normal distribution. float -s 7
-p or --plot_sampling Plots sampled structures on top of DeepStruc training data. Model must be DeepStruc. bool -p True
-g or --save_path Path to directory where predictions will be saved. bool -g ./best_preds
-i or --index_plot Highlights specific reconstruction in the latent space. --data must be specific file and not directory and '--plot True'. int -i 4
-P or --plot_data If True then the first loaded PDF is plotted and shown after normalization. bool -P ./best_preds

Authors

Andy S. Anker1
Emil T. S. Kjær1
Marcus N. Weng1
Simon J. L. Billinge2, 3
Raghavendra Selvan4, 5
Kirsten M. Ø. Jensen1

1 Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
2 Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA.
3 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
4 Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
5 Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N.

Should there be any question, desired improvement or bugs please contact us on GitHub or through email: [email protected] or [email protected].

Cite

If you use our code or our results, please consider citing our papers. Thanks in advance!

@article{kjær2022DeepStruc,
title={DeepStruc: Towards structure solution from pair distribution function data using deep generative models},
author={Emil T. S. Kjær, Andy S. Anker, Marcus N. Weng, Simon J. L. Billinge, Raghavendra Selvan, Kirsten M. Ø. Jensen},
year={2022}}
@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

Acknowledgments

Our code is developed based on the the following publication:

@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

License

This project is licensed under the Apache License Version 2.0, January 2004 - see the LICENSE file for details.

Owner
Emil Thyge Skaaning Kjær
Ph.D student in nanoscience at the University of Copenhagen.
Emil Thyge Skaaning Kjær
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022