ANEA: Distant Supervision for Low-Resource Named Entity Recognition

Related tags

Deep Learninganea
Overview

ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA is a tool to automatically annotate named entities in unlabeled text based on entity lists for the use as distant supervision.

Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. ANEA is a tool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually.

An example of the workflow can be seen in this video. For more details, take a look at our paper (accepted at PML4DC @ ICLR'21). For the additional material of the paper, please check the subdirectory additional of this repository.

Installation

ANEA should run on all major operating systems. We recommend the installation via conda or miniconda:

git clone https://github.com/uds-lsv/anea

conda create -n anea python=3.7
conda activate anea
pip install spacy==2.2.4 Flask==1.1.1 fuzzywuzzy==0.18.0

For tokenizationa and lemmatization, a spacy language pack needs to be installed. Run the following command with the corresponding language code, e.g. en for English. Check https://spacy.io/usage for supported languages

python -m spacy download en

Download the Wikidata JSON dump from https://dumps.wikimedia.org/wikidatawiki/entities/ and extract it to the instance directory (this may take a while).

Running

After the installation, you can run ANEA using the following commands on the command line

conda activate anea
./run.sh

Then open the browser and go to the address http://localhost:5000/ If you run it for the first time, you should configure ANEA at the Settings tab.

The ANEA (server) tool can run on a different machine than the browser of the user. It is just necessary that the user's computer can access the port 5000 on the machine that the ANEA server is running on (e.g. via ssh port forwarding or opening the correspoding port on the firewall).

Support for Other Languages

ANEA uses Spacy for language preprocessing (tokenization and lemmatization). It currently supports English, German, French, Spanish, Portuguese, Italian, Dutch, Greek, Norwegian Bokmål and Lithuanian. For Estonian, EstNLTK, version 1.6, is supported by ANEA. In that case, ANEA needs to be installed with Python 3.6.

Text can also be preprocessed using external tools and then uploaded as whitespace tokenized text or in the CoNLL format (one token per line).

Other external preprocessing libraries can be added directly to ANEA by implementing a new Tokenizer class in autom_labeling_library/preprocessing.py (you can take a look at EstnltkTokenizer as an example) and adding it to the Preprocessing class. If you encounter any issues, just contact us.

Citation

If you use this tool, please cite us:

@article{hedderich21ANEA,
  author    = {Michael A. Hedderich and
               Lukas Lange and
               Dietrich Klakow},
  title     = {{ANEA:} Distant Supervision for Low-Resource Named Entity Recognition},
  journal   = {CoRR},
  volume    = {abs/2102.13129},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.13129},
  archivePrefix = {arXiv},
  eprint    = {2102.13129},
}

Development, Support & License

If you encounter any issues or problems when using ANEA, feel free to raise an issue on Github or contact us directly (mhedderich [at] lsv.uni-saarland [dot] de). We welcome contributes from other developers.

ANEA is licensed under the Apache License 2.0.

Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023