Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Overview

Net2Net

Code accompanying the NeurIPS 2020 oral paper

Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

tl;dr Our approach distills the residual information of one model with respect to another's and thereby enables translation between fixed off-the-shelf expert models such as BERT and BigGAN without having to modify or finetune them.

teaser arXiv | BibTeX | Project Page

News Dec 19th, 2020: added SBERT-to-BigGAN, SBERT-to-BigBiGAN and SBERT-to-AE (COCO)

Requirements

A suitable conda environment named net2net can be created and activated with:

conda env create -f environment.yaml
conda activate net2net

Datasets

  • CelebA: Create a symlink 'data/CelebA' pointing to a folder which contains the following files:
    .
    ├── identity_CelebA.txt
    ├── img_align_celeba
    ├── list_attr_celeba.txt
    └── list_eval_partition.txt
    
    These files can be obtained here.
  • CelebA-HQ: Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).
  • FFHQ: Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.
  • Anime Faces: First download the face images from the Anime Crop dataset and then apply the preprocessing of FFHQ to those images. We only keep images where the underlying dlib face recognition model recognizes a face. Finally, create a symlink data/anime which contains the processed anime face images.
  • Oil Portraits: Download here. Unpack the content and place the files in data/portraits. It consists of 18k oil portraits, which were obtained by running dlib on a subset of the WikiArt dataset dataset, kindly provided by A Style-Aware Content Loss for Real-time HD Style Transfer.
  • COCO: Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage.

ML4Creativity Demo

We include a streamlit demo, which utilizes our approach to demonstrate biases of datasets and their creative applications. More information can be found in our paper A Note on Data Biases in Generative Models from the Machine Learning for Creativity and Design at NeurIPS 2020. Download the models from

and place them into logs. Run the demo with

streamlit run ml4cad.py

Training

Our code uses Pytorch-Lightning and thus natively supports things like 16-bit precision, multi-GPU training and gradient accumulation. Training details for any model need to be specified in a dedicated .yaml file. In general, such a config file is structured as follows:

model:
  base_learning_rate: 4.5e-6
  target: 
   
    
  params:
    ...
data:
  target: translation.DataModuleFromConfig
  params:
    batch_size: ...
    num_workers: ...
    train:
      target: 
    
     
      params:
        ...
    validation:
      target: 
     
      
      params:
        ...

     
    
   

Any Pytorch-Lightning model specified under model.target is then trained on the specified data by running the command:

python translation.py --base 
   
     -t --gpus 0,

   

All available Pytorch-Lightning trainer arguments can be added via the command line, e.g. run

python translation.py --base 
   
     -t --gpus 0,1,2,3 --precision 16 --accumulate_grad_batches 2

   

to train a model on 4 GPUs using 16-bit precision and a 2-step gradient accumulation. More details are provided in the examples below.

Training a cINN

Training a cINN for network-to-network translation usually utilizes the Lighnting Module net2net.models.flows.flow.Net2NetFlow and makes a few further assumptions on the configuration file and model interface:

model:
  base_learning_rate: 4.5e-6
  target: net2net.models.flows.flow.Net2NetFlow
  params:
    flow_config:
      target: 
   
    
      params:
        ...

    cond_stage_config:
      target: 
    
     
      params:
        ...

    first_stage_config:
      target: 
     
      
      params:
        ...

     
    
   

Here, the entries under flow_config specifies the architecture and parameters of the conditional INN; cond_stage_config specifies the first network whose representation is to be translated into another network specified by first_stage_config. Our model net2net.models.flows.flow.Net2NetFlow expects that the first
network has a .encode() method which produces the representation of interest, while the second network should have an encode() and a decode() method, such that both of them applied sequentially produce the networks output. This allows for a modular combination of arbitrary models of interest. For more details, see the examples below.

Training a cINN - Superresolution

superres Training details for a cINN to concatenate two autoencoders from different image scales for stochastic superresolution are specified in configs/translation/faces32-to-256.yaml.

To train a model for translating from 32 x 32 images to 256 x 256 images on GPU 0, run

python translation.py --base configs/translation/faces32-to-faces256.yaml -t --gpus 0, 

and specify any additional training commands as described above. Note that this setup requires two pretrained autoencoder models, one on 32 x 32 images and the other on 256 x 256. If you want to train them yourself on a combination of FFHQ and CelebA-HQ, run

python translation.py --base configs/autoencoder/faces32.yaml -t --gpus 
   
    , 

   

for the 32 x 32 images; and

python translation.py --base configs/autoencoder/faces256.yaml -t --gpus 
   
    , 

   

for the model on 256 x 256 images. After training, adopt the corresponding model paths in configs/translation/faces32-to-faces256.yaml. Additionally, we provide weights of pretrained autoencoders for both settings: Weights 32x32; Weights256x256. To run the training as described above, put them into logs/2020-10-16T17-11-42_FacesFQ32x32/checkpoints/last.ckptand logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt, respectively.

Training a cINN - Unpaired Translation

superres All training scenarios for unpaired translation are specified in the configs in configs/creativity. We provide code and pretrained autoencoder models for three different translation tasks:

  • AnimePhotography; see configs/creativity/anime_photography_256.yaml. Download autoencoder checkpoint (Download Anime+Photography) and place into logs/2020-09-30T21-40-22_AnimeAndFHQ/checkpoints/epoch=000007.ckpt.
  • Oil-PortraitPhotography; see configs/creativity/portraits_photography_256.yaml Download autoencoder checkpoint (Download Portrait+Photography) and place into logs/2020-09-29T23-47-10_PortraitsAndFFHQ/checkpoints/epoch=000004.ckpt.
  • FFHQCelebA-HQCelebA; see configs/creativity/celeba_celebahq_ffhq_256.yaml Download autoencoder checkpoint (Download FFHQ+CelebAHQ+CelebA) and place into logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt. Note that this is the same autoencoder checkpoint as for the stochastic superresolution experiment.

To train a cINN on one of these unpaired transfer tasks using the first GPU, simply run

python translation.py --base configs/creativity/
   
    .yaml -t --gpus 0,

   

where .yaml is one of portraits_photography_256.yaml, celeba_celebahq_ffhq_256.yaml or anime_photography_256.yaml. Providing additional arguments to the pytorch-lightning trainer object is also possible as described above.

In our framework, unpaired translation between domains is formulated as a translation between expert 1, a model which can infer the domain a given image belongs to, and expert 2, a model which can synthesize images of each domain. In the examples provided, we assume that the domain label comes with the dataset and provide the net2net.modules.labels.model.Labelator module, which simply returns a one hot encoding of this label. However, one could also use a classification model which infers the domain label from the image itself. For expert 2, our examples use an autoencoder trained jointly on all domains, which is easily achieved by concatenating datasets together. The provided net2net.data.base.ConcatDatasetWithIndex concatenates datasets and returns the corresponding dataset label for each example, which can then be used by the Labelator class for the translation. The training configurations for the autoencoders used in the creativity experiments are included in configs/autoencoder/anime_photography_256.yaml, configs/autoencoder/celeba_celebahq_ffhq_256.yaml and configs/autoencoder/portraits_photography_256.yaml.

Unpaired Translation on Custom Datasets

Create pytorch datasets for each of your domains, create a concatenated dataset with ConcatDatasetWithIndex (follow the example in net2net.data.faces.CCFQTrain), train an autoencoder on the concatenated dataset (adjust the data section in configs/autoencoder/celeba_celebahq_ffhq_256.yaml) and finally train a net2net translation model between a Labelator and your autoencoder (adjust the sections data and first_stage_config in configs/creativity/celeba_celebahq_ffhq_256.yaml). You can then also add your new model to the available modes in the ml4cad.py demo to visualize the results.

Training a cINN - Text-to-Image

texttoimage We provide code to obtain a text-to-image model by translating between a text model (SBERT) and an image decoder. To show the flexibility of our approach, we include code for three different decoders: BigGAN, as described in the paper, BigBiGAN, which is only available as a tensorflow model and thus nicely shows how our approach can work with black-box experts, and an autoencoder.

SBERT-to-BigGAN

Train with

python translation.py --base configs/translation/sbert-to-biggan256.yaml -t --gpus 0,

When running it for the first time, the required models will be downloaded automatically.

SBERT-to-BigBiGAN

Since BigBiGAN is only available on tensorflow-hub, this example has an additional dependency on tensorflow. A suitable environment is provided in env_bigbigan.yaml, and you will need COCO for training. You can then start training with

python translation.py --base configs/translation/sbert-to-bigbigan.yaml -t --gpus 0,

Note that the BigBiGAN class is just a naive wrapper, which converts pytorch tensors to numpy arrays, feeds them to the tensorflow graph and again converts the result to pytorch tensors. It does not require gradients of the expert model and serves as a good example on how to use black-box experts.

SBERT-to-AE

Similarly to the other examples, you can also train your own autoencoder on COCO with

python translation.py --base configs/autoencoder/coco256.yaml -t --gpus 0,

or download a pre-trained one, and translate to it by running

python translation.py --base configs/translation/sbert-to-ae-coco256.yaml -t --gpus 0,

Shout-outs

Thanks to everyone who makes their code and models available.

BibTeX

@misc{rombach2020networktonetwork,
      title={Network-to-Network Translation with Conditional Invertible Neural Networks},
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2020},
      eprint={2005.13580},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{esser2020note,
      title={A Note on Data Biases in Generative Models}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.02516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022