Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Overview

Net2Net

Code accompanying the NeurIPS 2020 oral paper

Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

tl;dr Our approach distills the residual information of one model with respect to another's and thereby enables translation between fixed off-the-shelf expert models such as BERT and BigGAN without having to modify or finetune them.

teaser arXiv | BibTeX | Project Page

News Dec 19th, 2020: added SBERT-to-BigGAN, SBERT-to-BigBiGAN and SBERT-to-AE (COCO)

Requirements

A suitable conda environment named net2net can be created and activated with:

conda env create -f environment.yaml
conda activate net2net

Datasets

  • CelebA: Create a symlink 'data/CelebA' pointing to a folder which contains the following files:
    .
    ├── identity_CelebA.txt
    ├── img_align_celeba
    ├── list_attr_celeba.txt
    └── list_eval_partition.txt
    
    These files can be obtained here.
  • CelebA-HQ: Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).
  • FFHQ: Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.
  • Anime Faces: First download the face images from the Anime Crop dataset and then apply the preprocessing of FFHQ to those images. We only keep images where the underlying dlib face recognition model recognizes a face. Finally, create a symlink data/anime which contains the processed anime face images.
  • Oil Portraits: Download here. Unpack the content and place the files in data/portraits. It consists of 18k oil portraits, which were obtained by running dlib on a subset of the WikiArt dataset dataset, kindly provided by A Style-Aware Content Loss for Real-time HD Style Transfer.
  • COCO: Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage.

ML4Creativity Demo

We include a streamlit demo, which utilizes our approach to demonstrate biases of datasets and their creative applications. More information can be found in our paper A Note on Data Biases in Generative Models from the Machine Learning for Creativity and Design at NeurIPS 2020. Download the models from

and place them into logs. Run the demo with

streamlit run ml4cad.py

Training

Our code uses Pytorch-Lightning and thus natively supports things like 16-bit precision, multi-GPU training and gradient accumulation. Training details for any model need to be specified in a dedicated .yaml file. In general, such a config file is structured as follows:

model:
  base_learning_rate: 4.5e-6
  target: 
   
    
  params:
    ...
data:
  target: translation.DataModuleFromConfig
  params:
    batch_size: ...
    num_workers: ...
    train:
      target: 
    
     
      params:
        ...
    validation:
      target: 
     
      
      params:
        ...

     
    
   

Any Pytorch-Lightning model specified under model.target is then trained on the specified data by running the command:

python translation.py --base 
   
     -t --gpus 0,

   

All available Pytorch-Lightning trainer arguments can be added via the command line, e.g. run

python translation.py --base 
   
     -t --gpus 0,1,2,3 --precision 16 --accumulate_grad_batches 2

   

to train a model on 4 GPUs using 16-bit precision and a 2-step gradient accumulation. More details are provided in the examples below.

Training a cINN

Training a cINN for network-to-network translation usually utilizes the Lighnting Module net2net.models.flows.flow.Net2NetFlow and makes a few further assumptions on the configuration file and model interface:

model:
  base_learning_rate: 4.5e-6
  target: net2net.models.flows.flow.Net2NetFlow
  params:
    flow_config:
      target: 
   
    
      params:
        ...

    cond_stage_config:
      target: 
    
     
      params:
        ...

    first_stage_config:
      target: 
     
      
      params:
        ...

     
    
   

Here, the entries under flow_config specifies the architecture and parameters of the conditional INN; cond_stage_config specifies the first network whose representation is to be translated into another network specified by first_stage_config. Our model net2net.models.flows.flow.Net2NetFlow expects that the first
network has a .encode() method which produces the representation of interest, while the second network should have an encode() and a decode() method, such that both of them applied sequentially produce the networks output. This allows for a modular combination of arbitrary models of interest. For more details, see the examples below.

Training a cINN - Superresolution

superres Training details for a cINN to concatenate two autoencoders from different image scales for stochastic superresolution are specified in configs/translation/faces32-to-256.yaml.

To train a model for translating from 32 x 32 images to 256 x 256 images on GPU 0, run

python translation.py --base configs/translation/faces32-to-faces256.yaml -t --gpus 0, 

and specify any additional training commands as described above. Note that this setup requires two pretrained autoencoder models, one on 32 x 32 images and the other on 256 x 256. If you want to train them yourself on a combination of FFHQ and CelebA-HQ, run

python translation.py --base configs/autoencoder/faces32.yaml -t --gpus 
   
    , 

   

for the 32 x 32 images; and

python translation.py --base configs/autoencoder/faces256.yaml -t --gpus 
   
    , 

   

for the model on 256 x 256 images. After training, adopt the corresponding model paths in configs/translation/faces32-to-faces256.yaml. Additionally, we provide weights of pretrained autoencoders for both settings: Weights 32x32; Weights256x256. To run the training as described above, put them into logs/2020-10-16T17-11-42_FacesFQ32x32/checkpoints/last.ckptand logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt, respectively.

Training a cINN - Unpaired Translation

superres All training scenarios for unpaired translation are specified in the configs in configs/creativity. We provide code and pretrained autoencoder models for three different translation tasks:

  • AnimePhotography; see configs/creativity/anime_photography_256.yaml. Download autoencoder checkpoint (Download Anime+Photography) and place into logs/2020-09-30T21-40-22_AnimeAndFHQ/checkpoints/epoch=000007.ckpt.
  • Oil-PortraitPhotography; see configs/creativity/portraits_photography_256.yaml Download autoencoder checkpoint (Download Portrait+Photography) and place into logs/2020-09-29T23-47-10_PortraitsAndFFHQ/checkpoints/epoch=000004.ckpt.
  • FFHQCelebA-HQCelebA; see configs/creativity/celeba_celebahq_ffhq_256.yaml Download autoencoder checkpoint (Download FFHQ+CelebAHQ+CelebA) and place into logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt. Note that this is the same autoencoder checkpoint as for the stochastic superresolution experiment.

To train a cINN on one of these unpaired transfer tasks using the first GPU, simply run

python translation.py --base configs/creativity/
   
    .yaml -t --gpus 0,

   

where .yaml is one of portraits_photography_256.yaml, celeba_celebahq_ffhq_256.yaml or anime_photography_256.yaml. Providing additional arguments to the pytorch-lightning trainer object is also possible as described above.

In our framework, unpaired translation between domains is formulated as a translation between expert 1, a model which can infer the domain a given image belongs to, and expert 2, a model which can synthesize images of each domain. In the examples provided, we assume that the domain label comes with the dataset and provide the net2net.modules.labels.model.Labelator module, which simply returns a one hot encoding of this label. However, one could also use a classification model which infers the domain label from the image itself. For expert 2, our examples use an autoencoder trained jointly on all domains, which is easily achieved by concatenating datasets together. The provided net2net.data.base.ConcatDatasetWithIndex concatenates datasets and returns the corresponding dataset label for each example, which can then be used by the Labelator class for the translation. The training configurations for the autoencoders used in the creativity experiments are included in configs/autoencoder/anime_photography_256.yaml, configs/autoencoder/celeba_celebahq_ffhq_256.yaml and configs/autoencoder/portraits_photography_256.yaml.

Unpaired Translation on Custom Datasets

Create pytorch datasets for each of your domains, create a concatenated dataset with ConcatDatasetWithIndex (follow the example in net2net.data.faces.CCFQTrain), train an autoencoder on the concatenated dataset (adjust the data section in configs/autoencoder/celeba_celebahq_ffhq_256.yaml) and finally train a net2net translation model between a Labelator and your autoencoder (adjust the sections data and first_stage_config in configs/creativity/celeba_celebahq_ffhq_256.yaml). You can then also add your new model to the available modes in the ml4cad.py demo to visualize the results.

Training a cINN - Text-to-Image

texttoimage We provide code to obtain a text-to-image model by translating between a text model (SBERT) and an image decoder. To show the flexibility of our approach, we include code for three different decoders: BigGAN, as described in the paper, BigBiGAN, which is only available as a tensorflow model and thus nicely shows how our approach can work with black-box experts, and an autoencoder.

SBERT-to-BigGAN

Train with

python translation.py --base configs/translation/sbert-to-biggan256.yaml -t --gpus 0,

When running it for the first time, the required models will be downloaded automatically.

SBERT-to-BigBiGAN

Since BigBiGAN is only available on tensorflow-hub, this example has an additional dependency on tensorflow. A suitable environment is provided in env_bigbigan.yaml, and you will need COCO for training. You can then start training with

python translation.py --base configs/translation/sbert-to-bigbigan.yaml -t --gpus 0,

Note that the BigBiGAN class is just a naive wrapper, which converts pytorch tensors to numpy arrays, feeds them to the tensorflow graph and again converts the result to pytorch tensors. It does not require gradients of the expert model and serves as a good example on how to use black-box experts.

SBERT-to-AE

Similarly to the other examples, you can also train your own autoencoder on COCO with

python translation.py --base configs/autoencoder/coco256.yaml -t --gpus 0,

or download a pre-trained one, and translate to it by running

python translation.py --base configs/translation/sbert-to-ae-coco256.yaml -t --gpus 0,

Shout-outs

Thanks to everyone who makes their code and models available.

BibTeX

@misc{rombach2020networktonetwork,
      title={Network-to-Network Translation with Conditional Invertible Neural Networks},
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2020},
      eprint={2005.13580},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{esser2020note,
      title={A Note on Data Biases in Generative Models}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.02516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023