Empowering journalists and whistleblowers

Overview

Onymochat

Empowering journalists and whistleblowers

Version Python Versions Release Testted_On MIT License PR's Welcome

Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host your anonymous .onion webpage with Onymochat.

  • Onymochat works over the Tor.
  • Anyone can start their own chat server from their own PC.
  • It's end-to-end encrypted.
  • It's basically magic.

Features

  • Start your own chat server for two or more users from your own PC.
  • Users can get connected to a chat server using the public key of the server.
  • You can launch your chat client and chat with anyone who has your public key and server details (after he/she/they joins the server).
  • You can launch your own anonymous .onion webpage with Onymochat. You can use this anonymous website for your journalistic works and whistleblowing.

You don't have to rely upon any third-party app to provide you with a platform/server to anonymously chat with your friend. You can host your own server and if the person you want to chat with has the server's public key, he/she/they can join the server with his/her/their chat client and chat with you.

Multiple people can use a single chat server. The chat data is deleted whenever the server is closed. The chat is end to end encrypted, so even if someone hacks into the server somehow, they won't be able to get to know what two people are talking about. It uses 4096 bit RSA keys for encryption. You connect to the chat server over the Tor network, which gives you anonymity.

Security

Let's see what makes Onyomochat a secure chat application:

  • End-to-end 4096 bit RSA encryption for messages.
  • Version 3 Onion Service for your .onion webpage.
  • Version 3 Onion Service for your chat server.
  • Connection to server over the Tor network.

Installation

Environment Setup

Onymochat requires Python 3.9 or above to run. I have tested it with Python 3.9. Make sure that you have Python added to your PATH. When you install Python in your Windows system, make sure to check 'Add Python 3.x to PATH'. If you forget to do it, see this tutorial to know how to add Python to your PATH for Windows.

Install Python

For Windows and Mac

Download Python 3.9 from here. Use the installer to install Python in your System. Download 'macOS 64-bit universal2 installer' for Mac OS. Download 'Windows x86-64 executable installer' for your Windows 64 Bit system and 'Windows x86 executable installer' for Windows 32 bit system.

For Linux

Use the following command to install Python 3.9 on your Linux system.

apt-get install python3.9

Check pip

Make sure you have pip installed in your system. Use the following command to check if you have pip installed.

pip --version

If you see a message like 'pip 21.2.2' then you have pip installed on your system. Otherwise, follow this tutorial to install pip in your system. Generally, Python comes with an ensurepip module, which can install pip in a Python environment.

python -m ensurepip --upgrade

Download Repository

Go to the GitHub repository of Onymochat: https://github.com/SamratDuttaOfficial/onymochat

Click on the green 'Code' button and click on 'Download ZIP' and unzip the archive somewhere to use Onymochat.

Or, use the command below if you have git installed in your system.

git clone https://github.com/SamratDuttaOfficial/onymochat

Install Requirements

Open up your terminal (CMD on Windows) and go to the folder where you've cloned/unzipped Onymochat. Example:

cd C:\User\Desktop\Onymochat-master

Then install all the requirements from the requirements.txt file.

Windows:

pip install -r requirements.txt

Linux and Mac OS:

pip3 install -r requirements.txt

If you're on Linux, you might need to install Tkinter separately in the following way:

sudo apt install python3-tk

This will install all of the requirements, except Tor.

Install Tor

Download and install Tor browser from the official Tor Project website: https://www.torproject.org/download/

Take a note of where you're installing Tor/Tor Browser, it will be required later.

How to Use

After installation, open the 'onymochat' subdirectory in your terminal. This directory should have a file like run_onymochat.py. Run this file.

python run_onymochat.py

If you are on Linux, run that file using the following command instead:

python3 run_onymochat.py

This will run the Onymochat program in your terminal. This will greet you with a menu. Just input the number of the option you want to go to, and hit the enter button.

First, configure Onymochat with Tor.

Configure Onymocaht with Tor

Run the program and go to option 0 (zero).

Then, on the next prompt, enter the path to tor.exe in the TorBrowser folder. This is important to configure Onymochat with Tor. You have to do this step only once after installation. Paste the path to tor.exe in the TorBrowser (or any similar name) folder.

Example (For Windows): C:\user\Desktop\Tor Browser\Browser\TorBrowser\Tor\tor.exe

Example (For Mac): Applications\TorBrowser.app\Tor\tor.real

Linux users just write 'tor' without the quotations.

Now you are ready to use Onymochat

Things You Can Do

Here are all the things you can do with Onymochat.

  1. Create new hidden service and chat server
  2. Generate encryption keys for chat
  3. Run chat client
  4. Create onion webpage
  5. Generate QR codes for your encryption keys
  6. Generate QR codes for other keys
  7. Delete all saved keys
  8. Exit

How to Chat?

Here are some steps you need to follow to chat with someone through Onymochat.

CAUTION: NEVER SHARE ANY OF YOUR PRIVATE KEYS WITH ANYONE

Step 1

First, select option 1 to create a new hidden service and server and follow the instructions given in your terminal/command window. This will be the server where the chat data will be temporarily saved (all chat data will be lost when the hidden service and server is closed). You can press Ctrl + C to close this hidden service and server when you are done chatting.

Then, share the hidden service public key with someone you want to chat with. You can do it in person by meeting that person, or through any other communication method. You can use the same hidden service (same public key) to chat with multiple persons but this comes with the risk of sharing the same keys with everyone, and someone might use them later to spam you. Or, the other person, with whom you want to chat with, can provide you with his/her/their hidden service public key and you can use it too.

Step 2

Select option 2 to generate encryption keys for your chat. You need to share your public key with any person you want to chat with.

Step 3

Select option 3 to run your chat client. There you won't need to create any new encryption keys for chatting if you don't want to. Creating more than one key will be very hard to manage and might be the reason of some problems in future.

You will need to enter your or the other person's hidden service and server's public key and also the other person's public key for encryption to chat with that person.

How to Create an Anonymous (.onion) Webpage

Step 1

In the 'onymochat' directory, go to the 'onion_webpage' directory. Edit the index.html HTML according to your preference. This will be the page for your anonymous webpage.

Step 2

Select option 4 from the main menu. You can generate a new URL for your .onion webpage and save the private key of that webpage to resume the webpage later with the same URL. Or, you can use a pre-saved private key to resume your website with a particular URL you've generated before.

Generate QR Codes for Encryption Keys

Option 5, and 6 is to generate QR codes for different keys used in Onymochat. These QR codes are saved in \files\qr_codes. You can print them and share them with other people you want to communicate with.

Delete all saved keys and QR codes

Use option 7 to delete all saved public and private keys and QR codes from your system. Use this option only when you suspect a security breach.

Exit Program

Exit the program by selecting option 8 from the main menu.


Author

Created by Samrat Dutta

Github: https://github.com/SamratDuttaOfficial

Linkedin: https://www.linkedin.com/in/SamratDuttaOfficial

Buy me a coffee: https://www.buymeacoffee.com/SamratDutta


Github

Please visit the Github repository to download Onymochat and see a quick tutorial.

https://github.com/SamratDuttaOfficial/onymochat

Pull requests are always welcome.

Owner
Samrat Dutta
Developer, designer, writer. Developer of CoWiseCare.
Samrat Dutta
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023