Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Overview

Introduction

This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including:

  • calculating metrics;
  • extracting speaker/spoofing embeddings from pre-trained models;
  • training/evaluating Baseline2 in the evaluation plan.

More information can be found in the webpage and the evaluation plan

Prerequisites

Load ECAPA-TDNN & AASIST repositories

git submodule init
git submodule update

Install requirements

pip install -r requirements.txt

Data preparation

The ASVspoof2019 LA dataset [1] can be downloaded using the scipt in AASIST [2] repository

python ./aasist/download_dataset.py

Speaker & spoofing embedding extraction

Speaker embeddings and spoofing embeddings can be extracted using below script. Extracted embeddings will be saved in ./embeddings.

  • Speaker embeddings are extracted using the ECAPA-TDNN [3].
  • Spoofing embeddings are extracted using the AASIST [2].
  • We also prepared extracted embeddings.
    • To use prepared emebddings, git-lfs is required. Please refer to https://git-lfs.github.com for further instruction. After installing git-lfs use following command to download the embeddings.
      git-lfs install
      git-lfs pull
      
python save_embeddings.py

Baseline 2 Training

Run below script to train Baseline2 in the evaluation plan.

  • It will reproduce Baseline2 described in the Evaluation plan.
python main.py --config ./configs/baseline2.conf

Developing own models

  • Currently adding...

Adding custom DNN architecture

  1. create new file under ./models/.
  2. create a new configuration file under ./configs
  3. in the new configuration, modify model_arch and add required arguments in model_config.
  4. run python main.py --config {USER_CONFIG_FILE}

Using only metrics

Use get_all_EERs in metrics.py to calculate all three EERs.

  • prediction scores and keys should be passed on using
    • protocols/ASVspoof2019.LA.asv.dev.gi.trl.txt or
    • protocols/ASVspoof2019.LA.asv.eval.gi.trl.txt

References

[1] ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech

@article{wang2020asvspoof,
  title={ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech},
  author={Wang, Xin and Yamagishi, Junichi and Todisco, Massimiliano and Delgado, H{\'e}ctor and Nautsch, Andreas and Evans, Nicholas and Sahidullah, Md and Vestman, Ville and Kinnunen, Tomi and Lee, Kong Aik and others},
  journal={Computer Speech \& Language},
  volume={64},
  pages={101114},
  year={2020},
  publisher={Elsevier}
}

[2] AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks

@inproceedings{Jung2022AASIST,
  author={Jung, Jee-weon and Heo, Hee-Soo and Tak, Hemlata and Shim, Hye-jin and Chung, Joon Son and Lee, Bong-Jin and Yu, Ha-Jin and Evans, Nicholas},
  booktitle={Proc. ICASSP}, 
  title={AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks}, 
  year={2022}

[3] ECAPA-TDNN: Emphasized Channel Attention, propagation and aggregation in TDNN based speaker verification

@inproceedings{desplanques2020ecapa,
  title={{ECAPA-TDNN: Emphasized Channel Attention, propagation and aggregation in TDNN based speaker verification}},
  author={Desplanques, Brecht and Thienpondt, Jenthe and Demuynck, Kris},
  booktitle={Proc. Interspeech 2020},
  pages={3830--3834},
  year={2020}
}
You might also like...
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

Codes for ACL-IJCNLP 2021 Paper
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

Pocsploit is a lightweight, flexible and novel open source poc verification framework
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

Comments
  • About the extracted embeddings.

    About the extracted embeddings.

    When we installed the git-lfs and step to pull the embeddings data, an error like:

    batch response: This repository is over its data quota. Account responsible for LFS bandwidth should purchase more data packs to restore access.
    error: failed to fetch some objects from 'https://github.com/sasv-challenge/SASVC2022_Baseline.git/info/lfs
    

    was appeared.

    What should I do? How can I download the embeddings data?

    opened by ikou-austin 3
  • Reproducing baseline1

    Reproducing baseline1

    Thanks for providing the code for pre-trained models and baseline2. I am reproducing baseline1 based on your description in the evaluation plan, but I got very different results on the development set. I am also curious why the SPF-EER on the development set is much worse than that on the evaluation set in your results. Could you please provide the code for reproducing your baseline1 result? Thank you so much!

    opened by yzyouzhang 3
  • omegaconf.errors.ConfigAttributeError: Missing key

    omegaconf.errors.ConfigAttributeError: Missing key

    I encounter the following error when I run main.py with the Baseline2 configuration.

    omegaconf.errors.ConfigAttributeError: Missing key

    There are in total three keys missing. min_req_mem gradient_clip reload_every_n_epoch

    I fixed these missing keys one by one by setting them to 0 or None. I am curious what are the default values for these. Thank you very much.

    opened by yzyouzhang 3
  • speaker_loss.weight is not in the model.

    speaker_loss.weight is not in the model.

    Thanks for your repo. I have successfully replicated the baseline2 performance. I encounter the following messages when I run python save_embeddings.py. It did not crash the program but I wonder where is the second line printed from since I did not find it. I am also not sure if it will cause potential issues.

    Device: cuda speaker_loss.weight is not in the model. Getting embedgins from set trn...

    Thanks.

    opened by yzyouzhang 1
Releases(v0.0.2)
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023