Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Overview

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Learning Debiased Representation via Disentangled Feature Augmentation
Jungsoo Lee* (KAIST AI, Kakao Enterprise), Eungyeup Kim* (KAIST AI, Kakao Enterprise),
Juyoung Lee (Kakao Enterprise), Jihyeon Lee (KAIST AI), and Jaegul Choo (KAIST AI)
(* indicates equal contribution. The order of first authors was chosen by tossing a coin.)
NeurIPS 2021, Oral

Paper: Arxiv

Abstract: Image classification models tend to make decisions based on peripheral attributes of data items that have strong correlation with a target variable (i.e., dataset bias). These biased models suffer from the poor generalization capability when evaluated on unbiased datasets. Existing approaches for debiasing often identify and emphasize those samples with no such correlation (i.e., bias-conflicting) without defining the bias type in advance. However, such bias-conflicting samples are significantly scarce in biased datasets, limiting the debiasing capability of these approaches. This paper first presents an empirical analysis revealing that training with "diverse" bias-conflicting samples beyond a given training set is crucial for debiasing as well as the generalization capability. Based on this observation, we propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples. To this end, our method learns the disentangled representation of (1) the intrinsic attributes (i.e., those inherently defining a certain class) and (2) bias attributes (i.e., peripheral attributes causing the bias), from a large number of bias-aligned samples, the bias attributes of which have strong correlation with the target variable. Using the disentangled representation, we synthesize bias-conflicting samples that contain the diverse intrinsic attributes of bias-aligned samples by swapping their latent features. By utilizing these diversified bias-conflicting features during the training, our approach achieves superior classification accuracy and debiasing results against the existing baselines on both synthetic as well as a real-world dataset.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI, Kakao Enterprise)
Eungyeup Kim [Website] [LinkedIn] [Google Scholar] (KAIST AI, Kakao Enterprise)
Juyoung Lee [Website] (Kakao Enterprise)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/kakaoenterprise/Learning-Debiased-Disentangled.git
cd Learning-Debiased-Disentangled
pip install -r requirements.txt

Datasets

We used three datasets in our paper.

Download the datasets with the following url. Note that BFFHQ is the dataset used in "BiaSwap: Removing Dataset Bias with Bias-Tailored Swapping Augmentation" (Kim et al., ICCV 2021). Unzip the files and the directory structures will be as following:

cmnist
 └ 0.5pct / 1pct / 2pct / 5pct
     └ align
     └ conlict
     └ valid
 └ test
cifar10c
 └ 0.5pct / 1pct / 2pct / 5pct
     └ align
     └ conlict
     └ valid
 └ test
bffhq
 └ 0.5pct
 └ valid
 └ test

How to Run

CMNIST

Vanilla
python train.py --dataset cmnist --exp=cmnist_0.5_vanilla --lr=0.01 --percent=0.5pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_1_vanilla --lr=0.01 --percent=1pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_2_vanilla --lr=0.01 --percent=2pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_5_vanilla --lr=0.01 --percent=5pct --train_vanilla --tensorboard --wandb
bash scripts/run_cmnist_vanilla.sh
Ours
python train.py --dataset cmnist --exp=cmnist_0.5_ours --lr=0.01 --percent=0.5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_1_ours --lr=0.01 --percent=1pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_2_ours --lr=0.01 --percent=2pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_5_ours --lr=0.01 --percent=5pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
bash scripts/run_cmnist_ours.sh

Corrupted CIFAR10

Vanilla
python train.py --dataset cifar10c --exp=cifar10c_0.5_vanilla --lr=0.001 --percent=0.5pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_1_vanilla --lr=0.001 --percent=1pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_2_vanilla --lr=0.001 --percent=2pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_5_vanilla --lr=0.001 --percent=5pct --train_vanilla --tensorboard --wandb
bash scripts/run_cifar10c_vanilla.sh
Ours
python train.py --dataset cifar10c --exp=cifar10c_0.5_ours --lr=0.0005 --percent=0.5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=1 --lambda_swap_align=1 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_1_ours --lr=0.001 --percent=1pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=5 --lambda_swap_align=5 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_2_ours --lr=0.001 --percent=2pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=5 --lambda_swap_align=5 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_5_ours --lr=0.001 --percent=5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=1 --lambda_swap_align=1 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
bash scripts/run_cifar10c_ours.sh

BFFHQ

Vanilla
python train.py --dataset bffhq --exp=bffhq_0.5_vanilla --lr=0.0001 --percent=0.5pct --train_vanilla --tensorboard --wandb
bash scripts/run_bffhq_vanilla.sh
Ours
python train.py --dataset bffhq --exp=bffhq_0.5_ours --lr=0.0001 --percent=0.5pct --lambda_swap=0.1 --curr_step=10000 --use_lr_decay --lr_decay_step=10000 --lambda_dis_align 2. --lambda_swap_align 2. --dataset bffhq --train_ours --tensorboard --wandb
bash scripts/run_bffhq_ours.sh

Pretrained Models

In order to test our pretrained models, run the following command.

python test.py --pretrained_path=
   
     --dataset=
    
      --percent=
     

     
    
   

We provide the pretrained models in the following urls.
CMNIST 0.5pct
CMNIST 1pct
CMNIST 2pct
CMNIST 5pct

CIFAR10C 0.5pct
CIFAR10C 1pct
CIFAR10C 2pct
CIFAR10C 5pct

BFFHQ 0.5pct

Citations

Bibtex coming soon!

Contact

Jungsoo Lee

Eungyeup Kim

Juyoung Lee

Kakao Enterprise/Vision Team

Acknowledgments

This work was mainly done when both of the first authors were doing internship at Vision Team/AI Lab/Kakao Enterprise. Our pytorch implementation is based on LfF. Thanks for the implementation.

Owner
Kakao Enterprise Corp.
Kakao Enterprise Corp.
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Ian Covert 130 Jan 01, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022