gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

Overview

Gym-ANM

Documentation Status codecov CI (pip) CI (conda) License: MIT

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

The gym-anm framework was designed with one goal in mind: bridge the gap between research in RL and in the management of power systems. We attempt to do this by providing RL researchers with an easy-to-work-with library of environments that model decision-making tasks in power grids.

Papers:

Key features

  • Very little background in electricity systems modelling it required. This makes gym-anm an ideal starting point for RL students and researchers looking to enter the field.
  • The environments (tasks) generated by gym-anm follow the OpenAI Gym framework, with which a large part of the RL community is already familiar.
  • The flexibility of gym-anm, with its different customizable components, makes it a suitable framework to model a wide range of ANM tasks, from simple ones that can be used for educational purposes, to complex ones designed to conduct advanced research.

Documentation

Documentation is provided online at https://gym-anm.readthedocs.io/en/latest/.

Installation

Requirements

gym-anm requires Python 3.7+ and can run on Linux, MaxOS, and Windows.

We recommend installing gym-anm in a Python environment (e.g., virtualenv or conda).

Using pip

Using pip (preferably after activating your virtual environment):

pip install gym-anm

Building from source

Alternatively, you can build gym-anm directly from source:

git clone https://github.com/robinhenry/gym-anm.git
cd gym-anm
pip install -e .

Example

The following code snippet illustrates how gym-anm environments can be used. In this example, actions are randomly sampled from the action space of the environment ANM6Easy-v0. For more information about the agent-environment interface, see the official OpenAI Gym documentation.

import gym
import time

env = gym.make('gym_anm:ANM6Easy-v0')
o = env.reset()

for i in range(100):
    a = env.action_space.sample()
    o, r, done, info = env.step(a)
    env.render()
    time.sleep(0.5)  # otherwise the rendering is too fast for the human eye.

The above code would render the environment in your default web browser as shown in the image below: alt text

Additional example scripts can be found in examples/.

Testing the installation

All unit tests in gym-anm can be ran from the project root directory with:

python -m tests

Contributing

Contributions are always welcome! Please read the contribution guidelines first.

Citing the project

All publications derived from the use of gym-anm should cite the following two 2021 papers:

@article{HENRY2021100092,
    title = {Gym-ANM: Reinforcement learning environments for active network management tasks in electricity distribution systems},
    journal = {Energy and AI},
    volume = {5},
    pages = {100092},
    year = {2021},
    issn = {2666-5468},
    doi = {https://doi.org/10.1016/j.egyai.2021.100092},
    author = {Robin Henry and Damien Ernst},
}
@article{HENRY2021100092,
    title = {Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education},
    journal = {Software Impacts},
    volume = {9},
    pages = {100092},
    year = {2021},
    issn = {2665-9638},
    doi = {https://doi.org/10.1016/j.simpa.2021.100092},
    author = {Robin Henry and Damien Ernst}
}

Maintainers

gym-anm is currently maintained by Robin Henry.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Comments
  • Rendering Problem on Windows 10

    Rendering Problem on Windows 10

    When running the example 'gym_anm:ANM6Easy-v0' given in the quickstart section there is a problem when rendering the environment. The rendering tab that opens on the browser is blank.

    I am running windows 10 and I tried running the script on a Jupyter Notebook (Python 3.8.5), in Google Collab and in Pycharm (Python 3.9). The error log I am getting is:

     Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 116, in spawn_main
        exitcode = _main(fd, parent_sentinel)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 125, in _main
        prepare(preparation_data)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 236, in prepare
        _fixup_main_from_path(data['init_main_from_path'])
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
        main_content = runpy.run_path(main_path,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 268, in run_path
        return _run_module_code(code, init_globals, run_name,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 97, in _run_module_code
        _run_code(code, mod_globals, init_globals,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "C:\Users\diego\PycharmProjects\thesis\main.py", line 16, in <module>
        env.render()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\anm6.py", line 92, in render
        self._init_render(specs)
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\anm6.py", line 188, in _init_render
        rendering.start(title, dev_type, ps, qs, branch_rate,
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\rendering.py", line 54, in start
        http_server = HttpServer()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\servers.py", line 171, in __init__
        self.process = self._start_http_process()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\servers.py", line 184, in _start_http_process
        service.start()
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\process.py", line 121, in start
        self._popen = self._Popen(self)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 224, in _Popen
        return _default_context.get_context().Process._Popen(process_obj)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 327, in _Popen
        return Popen(process_obj)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
        prep_data = spawn.get_preparation_data(process_obj._name)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
        _check_not_importing_main()
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError: 
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    
    bug 
    opened by diegofz 2
  • ImportError while running tests

    ImportError while running tests

    When I run the test command: python -m tests I get the following error:

    ======================================================================
    ERROR: test_dcopf_agent (unittest.loader._FailedTest)
    ----------------------------------------------------------------------
    ImportError: Failed to import test module: test_dcopf_agent
    Traceback (most recent call last):
      File "/home/satan/miniconda3/envs/rl-algo-env/lib/python3.7/unittest/loader.py", line 434, in _find_test_path
        module = self._get_module_from_name(name)
      File "/home/satan/miniconda3/envs/rl-algo-env/lib/python3.7/unittest/loader.py", line 375, in _get_module_from_name
        __import__(name)
      File "/home/satan/Torch_Env_List/gym-anm/tests/test_dcopf_agent.py", line 6, in <module>
        from gym_anm import MPCAgent
    ImportError: cannot import name 'MPCAgent' from 'gym_anm' (/home/satan/Torch_Env_List/gym-anm/gym_anm/__init__.py)
    
    
    ----------------------------------------------------------------------
    Ran 82 tests in 10.757s
    
    FAILED (errors=1)
    
    opened by sprakashdash 2
  • AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    I am running into the following issue in couple of places. I am fixing it by chaging np_random to np.random and using integers instead of randint. Is that correct?

    File C:\ProgramData\Anaconda3\envs\gym-anm\lib\site-packages\gym_anm\envs\anm6_env\anm6_easy.py:31, in ANM6Easy.init_state(self) 27 n_dev, n_gen, n_des = 7, 2, 1 29 state = np.zeros(2 * n_dev + n_des + n_gen + self.K) ---> 31 t_0 = self.np_random.randint(0, int(24 / self.delta_t)) 32 state[-1] = t_0 34 # Load (P, Q) injections.

    AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    Line 31 in gym-anm/gym_anm/env/anm6_env/anm6_easy.py:

        def init_state(self):
            n_dev, n_gen, n_des = 7, 2, 1
    
            state = np.zeros(2 * n_dev + n_des + n_gen + self.K)
    
            t_0 = self.np_random.randint(0, int(24 / self.delta_t))
            state[-1] = t_0
    
    opened by sifatron 1
  • Add possibility to model shunt elements in the power grid simulator

    Add possibility to model shunt elements in the power grid simulator

    This issue will track the addition of shunt elements to the power grid simulator, just like MATPOWER and other simulation packages do.

    Background

    Shunt elements were not originally included in gym-anm because we didn't want to over-complicate things for beginners with little experience in power system modeling. However, it seems that the feature would be useful to a number of people.

    Feel free to react to this comment if you would like to see this feature added, too!

    Plan

    The goal is to add the possibility to model shunt elements in the power grid simulator. It will follow the same mathematical representation as used by MATPOWER and others: shunt elements (e.g., capacitors or inductors) will be modeled as a fixed impedance connected to ground at a specific bus.

    More precisely, the modifications should follow equations (3.7) and (3.13) of the MATPOWER official documentation.

    enhancement 
    opened by robinhenry 1
  • Update requirements

    Update requirements

    • Switch to using poetry (documentation)
    • Update CI checks
    • Run black on source code, and add black check to CI checks
    • Add a Release GitHub actions workflow for more easily publish to pypi
    opened by robinhenry 0
  • The scalability of large-scale nodes system

    The scalability of large-scale nodes system

    Based on gym-anm, I built my 118-node system, which had 153 devices, 92 loads and 54 units, but I found that the speed of state initialization was very slow. I'm not sure what went wrong. Could you give me some help?

    opened by Kim-369 0
  • Replace MPCAgent with MPCAgentConstant

    Replace MPCAgent with MPCAgentConstant

    Resolving ImportError by replacing MPCAgent with MPCAgentConstant to run python -m tests. The base class has not implemented forecast() definition, so importing in the init file is showing NotImplementedError()

    opened by sprakashdash 0
  • Rendering Problem (Blank Screen)

    Rendering Problem (Blank Screen)

    I am running the following code:

    import gym
    import time
    
    def run():
        env = gym.make('gym_anm:ANM6Easy-v0')
        o = env.reset()
        
        for i in range(100):
            a = env.action_space.sample()
            o, r, done, info = env.step(a)
            env.render()
            time.sleep(0.5)  # otherwise the rendering is too fast for the human eye.
        env.close()
    
    if __name__ == '__main__':
        run()
    

    I get a blank screen on my browser. Running on both Windows 10 and 11.

    opened by sifatron 1
  • Running speed of large-scale nodes

    Running speed of large-scale nodes

    Based on gym-anm, I built my 118-node system, which had 153 devices, 92 loads and 54 units, but I found that the speed of state initialization was very slow. I'm not sure what went wrong. Could you give me some help?

    opened by Kim-369 1
Releases(1.1.4)
  • 1.1.4(Nov 27, 2022)

  • 1.1.3(Nov 27, 2022)

  • 1.1.2(Nov 27, 2022)

  • 1.1.1(Nov 27, 2022)

  • 1.0.2(Nov 27, 2022)

    What's Changed

    • Replace MPCAgent with MPCAgentConstant by @sprakashdash in https://github.com/robinhenry/gym-anm/pull/2
    • Add if __name__ == ... guards to examples for windows multiprocessing bug by @robinhenry in https://github.com/robinhenry/gym-anm/pull/5

    New Contributors

    • @sprakashdash made their first contribution in https://github.com/robinhenry/gym-anm/pull/2

    Full Changelog: https://github.com/robinhenry/gym-anm/commits/1.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
Robin Henry
Masters student working on the control and optimization of complex systems.
Robin Henry
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022