Synthesize photos from PhotoDNA using machine learning 🌱

Related tags

Deep Learningribosome
Overview

Ribosome Build Status

Synthesize photos from PhotoDNA.

Ribosome demo

See the blog post for more information.

Installation

Dependencies

You can install Python dependencies using pip install -r requirements.txt. If you want to install the packages manually, here is a list:

Pre-trained models

Ribosome is released with 4 pre-trained models:

Use the models trained on NSFW data at your own risk.

Usage

Inference

Use the infer.py script to produce images from hashes:

python infer.py [--model MODEL] [--output OUTPUT] hash

The hash is a base64-encoded string, e.g. cVwhQ58OSCEOIwF+AigAkT0GAWdwAQs8o04KGYMfHBUANRUOAycUEFABCh6PABIghDBzCa4RTysQYVcvMDdkMypBPSyNAgRCcTf2AC9PfiYSWDw3KTcxPxM2HSqTDSIsgxJFFA+iihERcU4fHEY4Lj0xhw3QJN4OXQwbIzJjVTsUodIVVy3/FY8I/wcui11O.

Training

Datasets

Datasets consist of images paired with hashes, in the format of a CSV file with paths/hashes, and image files in a directory. The CSV file has two colums, path and hash (no header row). The hash is base64-encoded. Images are 100x100 in size. After producing such a CSV, it may be convenient to shuffle it and split it into a training set and validation set.

Example dataset

Ribosome includes an example dataset in this format, produced from COCO:

Preparing a dataset

To produce 100x100 images from an existing dataset, it may be convenient to use ImageMagick.

To resize image.jpg to 100x100 ignoring the original aspect ratio:

mogrify -resize '100x100!' image.jpg

To resize image.jpg to 100x100 by taking a center crop:

mogrify -resize '100x100^' -gravity Center -extent '100x100' image.jpg

You can process files in parallel using find / xargs, e.g. to convert all .jpg images using 24 threads:

find . -name '*.jpg' | xargs -n 1 -P 24 mogrify -resize '100x100!'

Ribosome does not provide code to compute PhotoDNA hashes, but such code is available in pyPhotoDNA.

Train a model

Use the train.py script to train a model on a dataset:

python train.py --train-data TRAIN_DATA ...
  • --train-data is the path to the train data CSV
  • Paths in the CSV are interpreted relative to --data-dir (or . if not supplied)
  • --val-data is the path to the validation data CSV; if provided, the script will report the validation loss after every epoch

See python train.py --help for all the options.

License

Copyright (c) Anish Athalye. Released under the MIT License. See LICENSE.md for details.

You might also like...
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Intrusion Detection System using ensemble learning (machine learning)
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Knowledge Management for Humans using Machine Learning & Tags
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Pneumonia Detection using machine learning - with PyTorch
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Optimising chemical reactions using machine learning
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Algorithmic trading using machine learning.
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022