Knowledge Management for Humans using Machine Learning & Tags

Overview

HyperTag

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your text documents (yes, even PDF's) and images. Instead of introducing proprietary file formats like other existing file organization tools, HyperTag just smoothly layers on top of your existing files without any fuss.

Objective Function: Minimize time between a thought and access to all relevant files.

Accompanying blog post: https://blog.neotree.uber.space/posts/hypertag-file-organization-made-for-humans

Table of Contents

Install

Available on PyPI

$ pip install hypertag (supports both CPU only & CUDA accelerated execution!)

Community

Join the HyperTag matrix chat room to stay up to date on the latest developments or to ask for help.

Overview

HyperTag offers a slick CLI but more importantly it creates a directory called HyperTagFS which is a file system based representation of your files and tags using symbolic links and directories.

Directory Import: Import your existing directory hierarchies using $ hypertag import path/to/directory. HyperTag converts it automatically into a tag hierarchy using metatagging.

Semantic Text & Image Search (Experimental): Search for images (jpg, png) and text documents (yes, even PDF's) content with a simple text query. Text search is powered by the awesome Sentence Transformers library. Text to image search is powered by OpenAI's CLIP model. Currently only English queries are supported.

HyperTag Daemon (Experimental): Monitors HyperTagFS and directories added to the auto import list for user changes (see section "Start HyperTag Daemon" below). Also spawns the DaemonService which speeds up semantic search significantly (warning: daemon process is a RAM hog with ~2GB usage).

Fuzzy Matching Queries: HyperTag uses fuzzy matching to minimize friction in the unlikely case of a typo.

File Type Groups: HyperTag automatically creates folders containing common files (e.g. Images: jpg, png, etc., Documents: txt, pdf, etc., Source Code: py, js, etc.), which can be found in HyperTagFS.

HyperTag Graph: Quickly get an overview of your HyperTag Graph! HyperTag visualizes the metatag graph on every change and saves it at HyperTagFS/hypertag-graph.pdf.

HyperTag Graph Example

CLI Functions

Import existing directory recursively

Import files with tags inferred from the existing directory hierarchy.

$ hypertag import path/to/directory

Add file/s or URL/s manually

$ hypertag add path/to/file https://github.com/SeanPedersen/HyperTag

Tag file/s (with values)

Manually tag files. Shortcut: $ hypertag t

$ hypertag tag humans/*.txt with human "Homo Sapiens"

Add a value to a file's tag:

$ hypertag tag sean.txt with name="Sean Pedersen"

Untag file/s

Manually remove tag/s from file/s.

$ hypertag untag humans/*.txt with human "Homo Sapiens"

Tag a tag

Metatag tag/s to create tag hierarchies. Shortcut: $ hypertag tt

$ hypertag metatag human with animal

Merge tags

Merge all associations (files & tags) of tag A into tag B.

$ hypertag merge human into "Homo Sapiens"

Query using Set Theory

Print file names of the resulting set matching the query. Queries are composed of tags (with values) and operands. Tags are fuzzy matched for convenience. Nesting is currently not supported, queries are evaluated from left to right.
Shortcut: $ hypertag q

Query with a value using a wildcard: $ hypertag query name="Sean*"
Print paths: $ hypertag query human --path
Print fuzzy matched tag: $ hypertag query man --verbose
Disable fuzzy matching: $ hypertag query human --fuzzy=0

Default operand is AND (intersection):
$ hypertag query human name="Sean*" is equivalent to $ hypertag query human and name="Sean*"

OR (union):
$ hypertag query human or "Homo Sapiens"

MINUS (difference):
$ hypertag query human minus "Homo Sapiens"

Index supported image and text files

Only indexed files can be searched.

$ hypertag index

To parse even unparseable PDF's, install tesseract: # pacman -S tesseract tesseract-data-eng

Index only image files: $ hypertag index --image
Index only text files: $ hypertag index --text

Semantic search for text files

A custom search algorithm combining semantic with token matching search. Print text file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag s

$ hypertag search "your important text query" --path --score --top_k=10

Semantic search for image files

Print image file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag si

Text to image: $ hypertag search_image "your image content description" --path --score --top_k=10

Image to image: $ hypertag search_image "path/to/image.jpg" --path --score --top_k=10

Start HyperTag Daemon

Start daemon process with triple functionality:

  • Watches HyperTagFS directory for user changes
    • Maps file (symlink) and directory deletions into tag / metatag removal/s
    • On directory creation: Interprets name as set theory tag query and automatically populates it with results
    • On directory creation in Search Images or Search Texts: Interprets name as semantic search query (add top_k=42 to limit result size) and automatically populates it with results
  • Watches directories on the auto import list for user changes:
    • Maps file changes (moves & renames) to DB
    • On file creation: Adds new file/s with inferred tag/s and auto-indexes it (if supported file format).
  • Spawns DaemonService to load and expose models used for semantic search, speeding it up significantly

$ hypertag daemon

Print all tags of file/s

$ hypertag tags filename1 filename2

Print all metatags of tag/s

$ hypertag metatags tag1 tag2

Print all tags

$ hypertag show

Print all files

Print names: $ hypertag show files

Print paths: $ hypertag show files --path

Visualize HyperTag Graph

Visualize the metatag graph hierarchy (saved at HyperTagFS root).

$ hypertag graph

Specify layout algorithm (default: fruchterman_reingold):

$ hypertag graph --layout=kamada_kawai

Generate HyperTagFS

Generate file system based representation of your files and tags using symbolic links and directories.

$ hypertag mount

Add directory to auto import list

Directories added to the auto import list will be monitored by the daemon for new files or changes.

$ hypertag add_auto_import_dir path/to/directory

Set HyperTagFS directory path

Default is the user's home directory.

$ hypertag set_hypertagfs_dir path/to/directory

Architecture

  • Python and it's vibrant open-source community power HyperTag
  • Many other awesome open-source projects make HyperTag possible (listed in pyproject.toml)
  • SQLite3 serves as the meta data storage engine (located at ~/.config/hypertag/hypertag.db)
  • Added URLs are saved in ~/.config/hypertag/web_pages for websites, others in ~/.config/hypertag/downloads
  • Symbolic links are used to create the HyperTagFS directory structure
  • Semantic Search: boosted using hnswlib
    • Text to text search is powered by the awesome DistilBERT
    • Text to image & image to image search is powered by OpenAI's impressive CLIP model

Development

  • Find prioritized issues here: TODO List
  • Pick an issue and comment how you plan to tackle it before starting out, to make sure no dev time is wasted.
  • Clone repo: $ git clone https://github.com/SeanPedersen/HyperTag.git
  • $ cd HyperTag/
  • Install Poetry
  • Install dependencies: $ poetry install
  • Activate virtual environment: $ poetry shell
  • Run all tests: $ pytest -v
  • Run formatter: $ black hypertag/
  • Run linter: $ flake8
  • Run type checking: $ mypy **/*.py
  • Run security checking: $ bandit --exclude tests/ -r .
  • Codacy: Dashboard
  • Run HyperTag: $ python -m hypertag

Inspiration

What is the point of HyperTag's existence?
HyperTag offers many unique features such as the import, semantic search, graphing and fuzzy matching functions that make it very convenient to use. All while HyperTag's code base staying relatively tiny at <2000 LOC compared to similar projects like TMSU (>10,000 LOC in Go) and SuperTag (>25,000 LOC in Rust), making it easy to hack on.

Owner
Ravn Tech, Inc.
Rapidly Emerging & Adapting Flock
Ravn Tech, Inc.
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022