Knowledge Management for Humans using Machine Learning & Tags

Overview

HyperTag

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your text documents (yes, even PDF's) and images. Instead of introducing proprietary file formats like other existing file organization tools, HyperTag just smoothly layers on top of your existing files without any fuss.

Objective Function: Minimize time between a thought and access to all relevant files.

Accompanying blog post: https://blog.neotree.uber.space/posts/hypertag-file-organization-made-for-humans

Table of Contents

Install

Available on PyPI

$ pip install hypertag (supports both CPU only & CUDA accelerated execution!)

Community

Join the HyperTag matrix chat room to stay up to date on the latest developments or to ask for help.

Overview

HyperTag offers a slick CLI but more importantly it creates a directory called HyperTagFS which is a file system based representation of your files and tags using symbolic links and directories.

Directory Import: Import your existing directory hierarchies using $ hypertag import path/to/directory. HyperTag converts it automatically into a tag hierarchy using metatagging.

Semantic Text & Image Search (Experimental): Search for images (jpg, png) and text documents (yes, even PDF's) content with a simple text query. Text search is powered by the awesome Sentence Transformers library. Text to image search is powered by OpenAI's CLIP model. Currently only English queries are supported.

HyperTag Daemon (Experimental): Monitors HyperTagFS and directories added to the auto import list for user changes (see section "Start HyperTag Daemon" below). Also spawns the DaemonService which speeds up semantic search significantly (warning: daemon process is a RAM hog with ~2GB usage).

Fuzzy Matching Queries: HyperTag uses fuzzy matching to minimize friction in the unlikely case of a typo.

File Type Groups: HyperTag automatically creates folders containing common files (e.g. Images: jpg, png, etc., Documents: txt, pdf, etc., Source Code: py, js, etc.), which can be found in HyperTagFS.

HyperTag Graph: Quickly get an overview of your HyperTag Graph! HyperTag visualizes the metatag graph on every change and saves it at HyperTagFS/hypertag-graph.pdf.

HyperTag Graph Example

CLI Functions

Import existing directory recursively

Import files with tags inferred from the existing directory hierarchy.

$ hypertag import path/to/directory

Add file/s or URL/s manually

$ hypertag add path/to/file https://github.com/SeanPedersen/HyperTag

Tag file/s (with values)

Manually tag files. Shortcut: $ hypertag t

$ hypertag tag humans/*.txt with human "Homo Sapiens"

Add a value to a file's tag:

$ hypertag tag sean.txt with name="Sean Pedersen"

Untag file/s

Manually remove tag/s from file/s.

$ hypertag untag humans/*.txt with human "Homo Sapiens"

Tag a tag

Metatag tag/s to create tag hierarchies. Shortcut: $ hypertag tt

$ hypertag metatag human with animal

Merge tags

Merge all associations (files & tags) of tag A into tag B.

$ hypertag merge human into "Homo Sapiens"

Query using Set Theory

Print file names of the resulting set matching the query. Queries are composed of tags (with values) and operands. Tags are fuzzy matched for convenience. Nesting is currently not supported, queries are evaluated from left to right.
Shortcut: $ hypertag q

Query with a value using a wildcard: $ hypertag query name="Sean*"
Print paths: $ hypertag query human --path
Print fuzzy matched tag: $ hypertag query man --verbose
Disable fuzzy matching: $ hypertag query human --fuzzy=0

Default operand is AND (intersection):
$ hypertag query human name="Sean*" is equivalent to $ hypertag query human and name="Sean*"

OR (union):
$ hypertag query human or "Homo Sapiens"

MINUS (difference):
$ hypertag query human minus "Homo Sapiens"

Index supported image and text files

Only indexed files can be searched.

$ hypertag index

To parse even unparseable PDF's, install tesseract: # pacman -S tesseract tesseract-data-eng

Index only image files: $ hypertag index --image
Index only text files: $ hypertag index --text

Semantic search for text files

A custom search algorithm combining semantic with token matching search. Print text file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag s

$ hypertag search "your important text query" --path --score --top_k=10

Semantic search for image files

Print image file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag si

Text to image: $ hypertag search_image "your image content description" --path --score --top_k=10

Image to image: $ hypertag search_image "path/to/image.jpg" --path --score --top_k=10

Start HyperTag Daemon

Start daemon process with triple functionality:

  • Watches HyperTagFS directory for user changes
    • Maps file (symlink) and directory deletions into tag / metatag removal/s
    • On directory creation: Interprets name as set theory tag query and automatically populates it with results
    • On directory creation in Search Images or Search Texts: Interprets name as semantic search query (add top_k=42 to limit result size) and automatically populates it with results
  • Watches directories on the auto import list for user changes:
    • Maps file changes (moves & renames) to DB
    • On file creation: Adds new file/s with inferred tag/s and auto-indexes it (if supported file format).
  • Spawns DaemonService to load and expose models used for semantic search, speeding it up significantly

$ hypertag daemon

Print all tags of file/s

$ hypertag tags filename1 filename2

Print all metatags of tag/s

$ hypertag metatags tag1 tag2

Print all tags

$ hypertag show

Print all files

Print names: $ hypertag show files

Print paths: $ hypertag show files --path

Visualize HyperTag Graph

Visualize the metatag graph hierarchy (saved at HyperTagFS root).

$ hypertag graph

Specify layout algorithm (default: fruchterman_reingold):

$ hypertag graph --layout=kamada_kawai

Generate HyperTagFS

Generate file system based representation of your files and tags using symbolic links and directories.

$ hypertag mount

Add directory to auto import list

Directories added to the auto import list will be monitored by the daemon for new files or changes.

$ hypertag add_auto_import_dir path/to/directory

Set HyperTagFS directory path

Default is the user's home directory.

$ hypertag set_hypertagfs_dir path/to/directory

Architecture

  • Python and it's vibrant open-source community power HyperTag
  • Many other awesome open-source projects make HyperTag possible (listed in pyproject.toml)
  • SQLite3 serves as the meta data storage engine (located at ~/.config/hypertag/hypertag.db)
  • Added URLs are saved in ~/.config/hypertag/web_pages for websites, others in ~/.config/hypertag/downloads
  • Symbolic links are used to create the HyperTagFS directory structure
  • Semantic Search: boosted using hnswlib
    • Text to text search is powered by the awesome DistilBERT
    • Text to image & image to image search is powered by OpenAI's impressive CLIP model

Development

  • Find prioritized issues here: TODO List
  • Pick an issue and comment how you plan to tackle it before starting out, to make sure no dev time is wasted.
  • Clone repo: $ git clone https://github.com/SeanPedersen/HyperTag.git
  • $ cd HyperTag/
  • Install Poetry
  • Install dependencies: $ poetry install
  • Activate virtual environment: $ poetry shell
  • Run all tests: $ pytest -v
  • Run formatter: $ black hypertag/
  • Run linter: $ flake8
  • Run type checking: $ mypy **/*.py
  • Run security checking: $ bandit --exclude tests/ -r .
  • Codacy: Dashboard
  • Run HyperTag: $ python -m hypertag

Inspiration

What is the point of HyperTag's existence?
HyperTag offers many unique features such as the import, semantic search, graphing and fuzzy matching functions that make it very convenient to use. All while HyperTag's code base staying relatively tiny at <2000 LOC compared to similar projects like TMSU (>10,000 LOC in Go) and SuperTag (>25,000 LOC in Rust), making it easy to hack on.

Owner
Ravn Tech, Inc.
Rapidly Emerging & Adapting Flock
Ravn Tech, Inc.
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022