Background-Click Supervision for Temporal Action Localization

Related tags

Deep LearningBackTAL
Overview

Background-Click Supervision for Temporal Action Localization

This repository is the official implementation of BackTAL. In this work, we study the temporal action localization under background-click supervision, and find the performance bottleneck of the existing approaches mainly comes from the background errors. Thus, we convert existing action-click supervision to the background-click supervision and develop a novel method, called BackTAL. Extensive experiments on three benchmarks are conducted, which demonstrate the high performance of the established BackTAL and the rationality of the proposed background-click supervision.

Illustrating the architecture of the proposed BackTAL

Requirements

To install requirements:

conda env create -f environment.yaml

Data Preparation

Download

Download pre-extracted I3D features of Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back.

Please ensure the data structure is as below
├── data
   └── Thumos14
       ├── val
           ├── video_validation_0000051.npz
           ├── video_validation_0000052.npz
           └── ...
       └── test
           ├── video_test_0000004.npz
           ├── video_test_0000006.npz
           └── ...
   └── ActivityNet1.2
       ├── training
           ├── v___dXUJsj3yo.npz
           ├── v___wPHayoMgw.npz
           └── ...
       └── validation
           ├── v__3I4nm2zF5Y.npz
           ├── v__8KsVaJLOYI.npz
           └── ...
   └── HACS
       ├── training
           ├── v_0095rqic1n8.npz
           ├── v_62VWugDz1MY.npz
           └── ...
       └── validation
           ├── v_008gY2B8Pf4.npz
           ├── v_00BcXeG1gC0.npz
           └── ...
     

Background-Click Annotations

The raw annotations of THUMOS14 dataset are under directory './data/THUMOS14/human_anns'.

Evaluation

Pre-trained Models

You can download checkpoints for Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back. These models are trained on Thumos14, ActivityNet1.2 or HACS using the configuration file under the directory "./experiments/". Please put these checkpoints under directory "./checkpoints".

Evaluation

Before running the code, please activate the conda environment.

To evaluate BackTAL model on Thumos14, run:

cd ./tools
python eval.py -dataset THUMOS14 -weight_file ../checkpoints/THUMOS14.pth

To evaluate BackTAL model on ActivityNet1.2, run:

cd ./tools
python eval.py -dataset ActivityNet1.2 -weight_file ../checkpoints/ActivityNet1.2.pth

To evaluate BackTAL model on HACS, run:

cd ./tools
python eval.py -dataset HACS -weight_file ../checkpoints/HACS.pth

Results

Our model achieves the following performance:

THUMOS14

threshold 0.3 0.4 0.5 0.6 0.7
mAP 54.4 45.5 36.3 26.2 14.8

ActivityNet v1.2

threshold average-mAP 0.50 0.75 0.95
mAP 27.0 41.5 27.3 4.7

HACS

threshold average-mAP 0.50 0.75 0.95
mAP 20.0 31.5 19.5 4.7

Training

To train the BackTAL model on THUMOS14 dataset, please run this command:

cd ./tools
python train.py -dataset THUMOS14

To train the BackTAL model on ActivityNet v1.2 dataset, please run this command:

cd ./tools
python train.py -dataset ActivityNet1.2

To train the BackTAL model on HACS dataset, please run this command:

cd ./tools
python train.py -dataset HACS

Citing BackTAL

@article{yang2021background,
  title={Background-Click Supervision for Temporal Action Localization},
  author={Yang, Le and Han, Junwei and Zhao, Tao and Lin, Tianwei and Zhang, Dingwen and Chen, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

For any discussions, please contact [email protected].

Owner
LeYang
LeYang
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023