B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

Related tags

Deep LearningBBEA
Overview

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

This is the offical implementation of the aforementioned paper. Graphical Abstract


Abstract

The early pioneering Neural Architecture Search (NAS) works were multi-trial methods applicable to any general search space. The subsequent works took advantage of the early findings and developed weight-sharing methods that assume a structured search space typically with pre-fixed hyperparameters. Despite the amazing computational efficiency of the weight-sharing NAS algorithms, it is becoming apparent that multi-trial NAS algorithms are also needed for identifying very high-performance architectures, especially when exploring a general search space. In this work, we carefully review the latest multi-trial NAS algorithms and identify the key strategies including Evolutionary Algorithm (EA), Bayesian Optimization (BO), diversification, input and output transformations, and lower fidelity estimation. To accommodate the key strategies into a single framework, we develop B2EA that is a surrogate assisted EA with two BO surrogate models and a mutation step in between. To show that B2EA is robust and efficient, we evaluate three performance metrics over 14 benchmarks with general and cell-based search spaces. Comparisons with state-of-the-art multi-trial algorithms reveal that B2EA is robust and efficient over the 14 benchmarks for three difficulty levels of target performance.

Citation

To be updated soon


Requirements

Prerequisite

This project is developed and tested on Linux OS. If you want to run on Windows, we strongly suggest using Linux Subsystem for Windows. To avoid conflicting dependencies, we recommend to create a new virtual enviornment. For this reason, installing Anaconda suitable to the OS system is pre-required to create the virtual environment.

Package Installation

The following is creating an environment and also installing requried packages automatically using conda.

(base) device:path/BBEA$ conda create -n bbea python=3.6
(base) device:path/BBEA$ conda activate bbea
(bbea) device:path/BBEA$ sh install.sh

Tabular Dataset Installation

Pre-evaluated datasets enable to benchmark Hyper-Parameter Optimization(HPO) algorithm performance without hugh computational costs of DNN training.

HPO Benchmark

  • To run algorithms on the HPO-bench dataset, download the database files as follows:
(bbea) device:path/BBEA$ cd lookup
(bbea) device:path/BBEA/lookup$ wget http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
(bbea) device:path/BBEA/lookup$ tar xf fcnet_tabular_benchmarks.tar.gz

Note that *.hdf5 files should be located under /lookup/fcnet_tabular_benchmarks.

Two NAS Benchmarks

  • To run algorithms on the the NAS-bench-101 dataset,
    • download the tfrecord file and save it into /lookup.
    • NAS-bench-101 API requires to install the CPU version of TensorFlow 1.12.
(bbea)device:path/BBEA/lookup$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord

  • To run algorithms on the NAS-bench-201,
    • download NAS-Bench-201-v1_1-096897.pth file in the /lookup according to this doc.
    • NAS-bench-201 API requires to install pytorch CPU version. Refer to pytorch installation guide.
(bbea)device:path/BBEA$ conda install pytorch torchvision cpuonly -c pytorch

DNN Benchmark

  • To run algorithms on the DNN benchmark, download the zip file from the link.
    • Vaildate the file contains CSV files and JSON files in /lookup and /hp_conf, respectively.
    • Unzip the downloaded file and copy two directories into this project. Note the folders already exists in this project.

HPO Run

To run the B2EA algorithms

The experiment using the proposed method of the paper can be performed using the following runner:

  • bbea_runner.py
    • This runner can conduct the experiment that the input arguments have configured.
    • Specifically, the hyperparameter space configuration and the maximum runtime are two mandatory arguments. In the default setting, the names of the search spaces configurations denote the names of JSON configuration files in /hp_conf. The runtime, on the other hand, can be set using seconds. For convenience, 'm', 'h', 'd' can be postfixed to denote minutes, hours, and days.
    • Further detailed options such that the algorithm hyperparameters' setting and the run configuration such as repeated runs are optional.
    • Refer to the help (-h) option as the command line argument.
usage: bbea_runner.py [-h] [-dm] [-bm BENCHMARK_MODE] [-nt NUM_TRIALS]
                      [-etr EARLY_TERM_RULE] [-hd HP_CONFIG_DIR]
                      hp_config exp_time

positional arguments:
  hp_config             Hyperparameter space configuration file name.
  exp_time              The maximum runtime when an HPO run expires.

optional arguments:
  -h, --help            show this help message and exit
  -dm, --debug_mode     Set debugging mode.
  -nt NUM_TRIALS, --num_trials NUM_TRIALS
                        The total number of repeated runs. The default setting
                        is "1".
  -etr EARLY_TERM_RULE, --early_term_rule EARLY_TERM_RULE
                        Early termination rule. A name of compound rule, such
                        as "PentaTercet" or "DecaTercet", can be used. The
                        default setting is DecaTercet.
  -hd HP_CONFIG_DIR, --hp_config_dir HP_CONFIG_DIR
                        Hyperparameter space configuration directory. The
                        default setting is "./hp_conf/"


Results

Experimental results will be saved as JSON files under the /results directory. While the JSON file is human-readable and easily interpretable, we further provide utility functions in the python scripts of the above directory, which can analyze the results and plot the figures shown in the paper.

Owner
SNU ADSL
Applied Data Science Lab., Seoul National University
SNU ADSL
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022