B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

Related tags

Deep LearningBBEA
Overview

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

This is the offical implementation of the aforementioned paper. Graphical Abstract


Abstract

The early pioneering Neural Architecture Search (NAS) works were multi-trial methods applicable to any general search space. The subsequent works took advantage of the early findings and developed weight-sharing methods that assume a structured search space typically with pre-fixed hyperparameters. Despite the amazing computational efficiency of the weight-sharing NAS algorithms, it is becoming apparent that multi-trial NAS algorithms are also needed for identifying very high-performance architectures, especially when exploring a general search space. In this work, we carefully review the latest multi-trial NAS algorithms and identify the key strategies including Evolutionary Algorithm (EA), Bayesian Optimization (BO), diversification, input and output transformations, and lower fidelity estimation. To accommodate the key strategies into a single framework, we develop B2EA that is a surrogate assisted EA with two BO surrogate models and a mutation step in between. To show that B2EA is robust and efficient, we evaluate three performance metrics over 14 benchmarks with general and cell-based search spaces. Comparisons with state-of-the-art multi-trial algorithms reveal that B2EA is robust and efficient over the 14 benchmarks for three difficulty levels of target performance.

Citation

To be updated soon


Requirements

Prerequisite

This project is developed and tested on Linux OS. If you want to run on Windows, we strongly suggest using Linux Subsystem for Windows. To avoid conflicting dependencies, we recommend to create a new virtual enviornment. For this reason, installing Anaconda suitable to the OS system is pre-required to create the virtual environment.

Package Installation

The following is creating an environment and also installing requried packages automatically using conda.

(base) device:path/BBEA$ conda create -n bbea python=3.6
(base) device:path/BBEA$ conda activate bbea
(bbea) device:path/BBEA$ sh install.sh

Tabular Dataset Installation

Pre-evaluated datasets enable to benchmark Hyper-Parameter Optimization(HPO) algorithm performance without hugh computational costs of DNN training.

HPO Benchmark

  • To run algorithms on the HPO-bench dataset, download the database files as follows:
(bbea) device:path/BBEA$ cd lookup
(bbea) device:path/BBEA/lookup$ wget http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
(bbea) device:path/BBEA/lookup$ tar xf fcnet_tabular_benchmarks.tar.gz

Note that *.hdf5 files should be located under /lookup/fcnet_tabular_benchmarks.

Two NAS Benchmarks

  • To run algorithms on the the NAS-bench-101 dataset,
    • download the tfrecord file and save it into /lookup.
    • NAS-bench-101 API requires to install the CPU version of TensorFlow 1.12.
(bbea)device:path/BBEA/lookup$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord

  • To run algorithms on the NAS-bench-201,
    • download NAS-Bench-201-v1_1-096897.pth file in the /lookup according to this doc.
    • NAS-bench-201 API requires to install pytorch CPU version. Refer to pytorch installation guide.
(bbea)device:path/BBEA$ conda install pytorch torchvision cpuonly -c pytorch

DNN Benchmark

  • To run algorithms on the DNN benchmark, download the zip file from the link.
    • Vaildate the file contains CSV files and JSON files in /lookup and /hp_conf, respectively.
    • Unzip the downloaded file and copy two directories into this project. Note the folders already exists in this project.

HPO Run

To run the B2EA algorithms

The experiment using the proposed method of the paper can be performed using the following runner:

  • bbea_runner.py
    • This runner can conduct the experiment that the input arguments have configured.
    • Specifically, the hyperparameter space configuration and the maximum runtime are two mandatory arguments. In the default setting, the names of the search spaces configurations denote the names of JSON configuration files in /hp_conf. The runtime, on the other hand, can be set using seconds. For convenience, 'm', 'h', 'd' can be postfixed to denote minutes, hours, and days.
    • Further detailed options such that the algorithm hyperparameters' setting and the run configuration such as repeated runs are optional.
    • Refer to the help (-h) option as the command line argument.
usage: bbea_runner.py [-h] [-dm] [-bm BENCHMARK_MODE] [-nt NUM_TRIALS]
                      [-etr EARLY_TERM_RULE] [-hd HP_CONFIG_DIR]
                      hp_config exp_time

positional arguments:
  hp_config             Hyperparameter space configuration file name.
  exp_time              The maximum runtime when an HPO run expires.

optional arguments:
  -h, --help            show this help message and exit
  -dm, --debug_mode     Set debugging mode.
  -nt NUM_TRIALS, --num_trials NUM_TRIALS
                        The total number of repeated runs. The default setting
                        is "1".
  -etr EARLY_TERM_RULE, --early_term_rule EARLY_TERM_RULE
                        Early termination rule. A name of compound rule, such
                        as "PentaTercet" or "DecaTercet", can be used. The
                        default setting is DecaTercet.
  -hd HP_CONFIG_DIR, --hp_config_dir HP_CONFIG_DIR
                        Hyperparameter space configuration directory. The
                        default setting is "./hp_conf/"


Results

Experimental results will be saved as JSON files under the /results directory. While the JSON file is human-readable and easily interpretable, we further provide utility functions in the python scripts of the above directory, which can analyze the results and plot the figures shown in the paper.

Owner
SNU ADSL
Applied Data Science Lab., Seoul National University
SNU ADSL
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Xi Dongbo 78 Nov 29, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022