TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

Overview

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?

Open In Colab


A TensorFlow implementation of TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? [1]. In this paper, an earlier version of which is presented at NeurIPS 2021 [2], the authors suggest an adaptive token learning algorithm that makes ViT computationally much more efficient (in terms of FLOPs) and also increases downstream accuracy (here classification accuracy). Experimenting with CIFAR-10 we reduce the number of pathces from 64 to 4 (number of adaptively learned tokens) and also report a boost in the accuracy. We experiment with different hyperparameters and report results which aligns with the literature.

With and Without TokenLearner

We report results training our mini ViT with and without the vanilla TokenLearner module here. You can find the vanilla Token Learner module in the TokenLearner.ipynb notebook.

TokenLearner # tokens in
TokenLearner
Top-1 Acc
(Averaged across 5 runs)
GFLOPs TensorBoard
N - 56.112% 0.0184 Link
Y 8 56.55% 0.0153 Link
N - 56.37% 0.0184 Link
Y 4 56.4980% 0.0147 Link
N - (# Transformer layers: 8) 55.36% 0.0359 Link

TokenLearner v1.1

We have also implemented the Token Learner v11 module which aligns with the official implementation. The Token Learner v11 module can be found in the TokenLearner-V1.1.ipynb notebook. The results training with this module are as follows:

# Groups # Tokens Top-1 Acc GFLOPs TensorBoard
4 4 54.638% 0.0149 Link
8 8 54.898% 0.0146 Link
4 8 55.196% 0.0149 Link

We acknowledge that the results with this new TokenLearner module are slightly off than expected and this might mitigate with hyperparameter tuning.

Note: To compute the FLOPs of our models we use this utility from this repository.

Acknowledgements

References

[1] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?; Ryoo et al.; arXiv 2021; https://arxiv.org/abs/2106.11297

[2] TokenLearner: Adaptive Space-Time Tokenization for Videos; Ryoo et al., NeurIPS 2021; https://openreview.net/forum?id=z-l1kpDXs88

Owner
Aritra Roy Gosthipaty
Learning with a learning rate of 1e-10. Deep Learning Associate at @pyimagesearch.
Aritra Roy Gosthipaty
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022