Official pytorch implementation of Rainbow Memory (CVPR 2021)

Overview

Rainbow Memory - Official PyTorch Implementation

Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Jihwan Bang*, Heesu Kim*, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi
CVPR 2021
Paper | Bibtex
(* indicates equal contribution)

NOTE: The code will be pushed to this repository soon.

Abstract

Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity.

Overview of the results of RM

The table is shown for last accuracy comparison in various datasets in Blurry10-Online. If you want to see more details, see the paper.

Methods MNIST CIFAR100 ImageNet
EWC 90.98±0.61 26.95±0.36 39.54
Rwalk 90.69±0.62 32.31±0.78 35.26
iCaRL 78.09±0.60 17.39±1.04 17.52
GDumb 88.51±0.52 27.19±0.65 21.52
BiC 77.75±1.27 13.01±0.24 37.20
RM w/o DA 92.65±0.33 34.09±1.41 37.96
RM 91.80±0.69 41.35±0.95 50.11

Updates

  • April 2nd, 2021: Initial upload only README
  • April 16th, 2021: Upload all the codes for experiments

Getting Started

Requirements

  • Python3
  • Pytorch (>1.0)
  • torchvision (>0.2)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

Datasets

All the datasets are saved in dataset directory by following formats as shown below.

[dataset name] 
    |_train
        |_[class1 name]
            |_00001.png
            |_00002.png 
            ...
        |_[class2 name]
            ... 
    |_test (val for ImageNet)
        |_[class1 name]
            |_00001.png
            |_00002.png
            ...
        |_[class2 name]
            ...

You can easily download the dataset following above format.

For ImageNet, you should download the public site.

Usage

To run the experiments in the paper, you just run experiment.sh.

bash experiment.sh 

For various experiments, you should know the role of each argument.

  • MODE: CIL methods. Our method is called rm. [joint, gdumb, icarl, rm, ewc, rwalk, bic] (joint calculates accuracy when training all the datasets at once.)
  • MEM_MANAGE: Memory management method. default uses the memory method which the paper originally used. [default, random, reservoir, uncertainty, prototype].
  • RND_SEED: Random Seed Number
  • DATASET: Dataset name [mnist, cifar10, cifar100, imagenet]
  • STREAM: The setting whether current task data can be seen iteratively or not. [online, offline]
  • EXP: Task setup [disjoint, blurry10, blurry30]
  • MEM_SIZE: Memory size cifar10: k={200, 500, 1000}, mnist: k=500, cifar100: k=2,000, imagenet: k=20,000
  • TRANS: Augmentation. Multiple choices [cutmix, cutout, randaug, autoaug]

Results

There are three types of logs during running experiments; logs, results, tensorboard. The log files are saved in logs directory, and the results which contains accuracy of each task are saved in results directory.

root_directory
    |_ logs 
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.log
            |_ ...
    |_ results
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.npy
            |_...

In addition, you can also use the tensorboard as following command.

tensorboard --logdir tensorboard

Citation

@inproceedings{jihwan2021rainbow,
  title={Rainbow Memory: Continual Learning with a Memory of Diverse Samples},
  author={Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi},
  booktitle={CVPR},
  month={June},
  year={2021}
}

License

Copyright 2021-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see .
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023