Easily Process a Batch of Cox Models

Overview

ezcox: Easily Process a Batch of Cox Models

CRAN status Hits R-CMD-check Codecov test coverage Lifecycle: stable

The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result.

Installation

You can install the released version of ezcox from CRAN with:

install.packages("ezcox")

And the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("ShixiangWang/ezcox")

It is possible to install ezcox from Conda conda-forge channel:

conda install r-ezcox --channel conda-forge

Visualization feature of ezcox needs the recent version of forestmodel, please run the following commands:

remotes::install_github("ShixiangWang/forestmodel")

🔰 Example

This is a basic example which shows you how to get result from a batch of cox models.

library(ezcox)
#> Welcome to 'ezcox' package!
#> =======================================================================
#> You are using ezcox version 0.8.1
#> 
#> Github page  : https://github.com/ShixiangWang/ezcox
#> Documentation: https://shixiangwang.github.io/ezcox/articles/ezcox.html
#> 
#> Run citation("ezcox") to see how to cite 'ezcox'.
#> =======================================================================
#> 
library(survival)

# Build unvariable models
ezcox(lung, covariates = c("age", "sex", "ph.ecog"))
#> => Processing variable age
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> => Processing variable sex
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> => Processing variable ph.ecog
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> # A tibble: 3 × 12
#>   Variable is_control contrast_level ref_level n_contrast n_ref    beta    HR
#>   <chr>    <lgl>      <chr>          <chr>          <int> <int>   <dbl> <dbl>
#> 1 age      FALSE      age            age              228   228  0.0187 1.02 
#> 2 sex      FALSE      sex            sex              228   228 -0.531  0.588
#> 3 ph.ecog  FALSE      ph.ecog        ph.ecog          227   227  0.476  1.61 
#> # … with 4 more variables: lower_95 <dbl>, upper_95 <dbl>, p.value <dbl>,
#> #   global.pval <dbl>

# Build multi-variable models
# Control variable 'age'
ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age")
#> => Processing variable sex
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> => Processing variable ph.ecog
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> # A tibble: 4 × 12
#>   Variable is_control contrast_level ref_level n_contrast n_ref    beta    HR
#>   <chr>    <lgl>      <chr>          <chr>          <int> <int>   <dbl> <dbl>
#> 1 sex      FALSE      sex            sex              228   228 -0.513  0.599
#> 2 sex      TRUE       age            age              228   228  0.017  1.02 
#> 3 ph.ecog  FALSE      ph.ecog        ph.ecog          227   227  0.443  1.56 
#> 4 ph.ecog  TRUE       age            age              228   228  0.0113 1.01 
#> # … with 4 more variables: lower_95 <dbl>, upper_95 <dbl>, p.value <dbl>,
#> #   global.pval <dbl>
lung$ph.ecog = factor(lung$ph.ecog)
zz = ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age", return_models=TRUE)
#> => Processing variable sex
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
#> => Processing variable ph.ecog
#> ==> Building Surv object...
#> ==> Building Cox model...
#> ==> Done.
mds = get_models(zz)
str(mds, max.level = 1)
#> List of 2
#>  $ Surv ~ sex + age    :List of 19
#>   ..- attr(*, "class")= chr "coxph"
#>   ..- attr(*, "Variable")= chr "sex"
#>  $ Surv ~ ph.ecog + age:List of 22
#>   ..- attr(*, "class")= chr "coxph"
#>   ..- attr(*, "Variable")= chr "ph.ecog"
#>  - attr(*, "class")= chr [1:2] "ezcox_models" "list"
#>  - attr(*, "has_control")= logi TRUE

show_models(mds)

🌟 Vignettes

📃 Citation

If you are using it in academic research, please cite the preprint arXiv:2110.14232 along with URL of this repo.

Comments
  • Fast way to add interaction terms?

    Fast way to add interaction terms?

    Hi, just wondering how the the interaction terms can be handled as "controls" here. Any way to add them rather than manually create new 'interaction variables' in the data? Cheers.

    opened by lijing-lin 12
  • similar tools or approach

    similar tools or approach

    • https://github.com/kevinblighe/RegParallel https://bioconductor.org/packages/release/data/experiment/vignettes/RegParallel/inst/doc/RegParallel.html
    • https://pubmed.ncbi.nlm.nih.gov/25769333/
    opened by ShixiangWang 12
  • 没有show-models这个函数

    没有show-models这个函数

    install.packages("ezcox")#先安装包 packageVersion("ezcox")#0.4.0版本 library(survival) library(ezcox) library("devtools") install.packages("devtools") devtools::install_github("ShixiangWang/ezcox") lung$ph.ecog <- factor(lung$ph.ecog) zz <- ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age", return_models = TRUE) zz mds <- get_models(zz) str(mds, max.level = 1) install.packages("forestmodel") library("forestmodel") show_models(mds) 问题是没有show-models这个函数

    opened by demi0304 4
  • 并行速度不够快

    并行速度不够快

    library(survival)
    ### write a function
    fastcox_single <- function(num){
      data= cbind(clin,expreset[,num])
      UniNames <- colnames(data)[-c(1:2)]
      do.call(rbind,lapply(UniNames,function(i){
        surv =as.formula(paste('Surv(times, status)~',i))
        cur_cox=coxph(surv, data = data)
        x = summary(cur_cox)
        HR=x$coefficients[i,"exp(coef)"]
        HR.confint.lower = signif(x$conf.int[i,"lower .95"],3)
        HR.confint.upper = signif(x$conf.int[i,"upper .95"],3)
        CI <- paste0("(",HR.confint.lower, "-",HR.confint.upper,")")
        p.value=x$coef[i,"Pr(>|z|)"]
        data.frame(gene=i,HR=HR,CI=CI,p.value=p.value)
      }))
    }
    
    
    clin = share.data[,1:2]
    expreset = share.data[,-c(1:2)]
    length = ncol(expreset)
    groupdf = data.frame(colnuber = seq(1,length),
                         group = rep(1:ceiling(length/100),each=100,length.out=length))
    index = split(groupdf$colnuber,groupdf$group)
    library(future.apply)
    # options(future.globals.maxSize= 891289600)
    plan(multiprocess)
    share.data.os.result=do.call(rbind,future_lapply(index,fastcox_single))
    
    
    #=== Use ezcox
    # devtools::install_github("ShixiangWang/ezcox")
    res = ezcox::ezcox(share.data, covariates = colnames(share.data)[-(1:2)], parallel = TRUE, time = "times")
    
    
    share.data$VIM.INHBE
    tt = ezcox::ezcox(share.data, covariates = "VIM.INHBE", return_models = T, time = "times")
    
    
    
    

    大批量计算时两者时间差4倍

    enhancement 
    opened by ShixiangWang 3
  • 建议

    建议

    诗翔:

    我用你的这个R包,有两个建议,你可以改进一下:

    1. 对covariates的顺序,按照用户给的顺序进行展示,现在是按照字符的大小排序的。
    2. 对HR太大的值,使用科学记数法进行展示

    这个是用的代码

    zz = ezcox(
      scores.combined,
      covariates = c("JSI", "Tindex", "Subclonal_Aca", "Subclonal_Nec", "ITH_Aca", "ITH_Nec"),
      controls = "Age",
      time = "Survival_months",
      status = "Death",
      return_models = TRUE
    )
    
    mds = get_models(zz)
    
    show_models(mds, drop_controls = TRUE)
    
    

    这个是现在的图

    image

    opened by qingjian1991 2
  • Change format setting including text size

    Change format setting including text size

    See

    library(survival)
    library(forestmodel)
    library(ezcox)
    show_forest(lung, covariates = c("sex", "ph.ecog"), controls = "age", format_options = forest_model_format_options(text_size = 3))
    

    image

    opened by ShixiangWang 0
  • Weekly Digest (22 September, 2019 - 29 September, 2019)

    Weekly Digest (22 September, 2019 - 29 September, 2019)

    Here's the Weekly Digest for ShixiangWang/ezcox:


    ISSUES

    Last week, no issues were created.


    PULL REQUESTS

    Last week, no pull requests were created, updated or merged.


    COMMITS

    Last week there were no commits.


    CONTRIBUTORS

    Last week there were no contributors.


    STARGAZERS

    Last week there were no stargazers.


    RELEASES

    Last week there were no releases.


    That's all for last week, please :eyes: Watch and :star: Star the repository ShixiangWang/ezcox to receive next weekly updates. :smiley:

    You can also view all Weekly Digests by clicking here.

    Your Weekly Digest bot. :calendar:

    opened by weekly-digest[bot] 0
  • Weekly Digest (15 September, 2019 - 22 September, 2019)

    Weekly Digest (15 September, 2019 - 22 September, 2019)

    Here's the Weekly Digest for ShixiangWang/ezcox:


    ISSUES

    Last week, no issues were created.


    PULL REQUESTS

    Last week, no pull requests were created, updated or merged.


    COMMITS

    Last week there were no commits.


    CONTRIBUTORS

    Last week there were no contributors.


    STARGAZERS

    Last week there were no stargazers.


    RELEASES

    Last week there were no releases.


    That's all for last week, please :eyes: Watch and :star: Star the repository ShixiangWang/ezcox to receive next weekly updates. :smiley:

    You can also view all Weekly Digests by clicking here.

    Your Weekly Digest bot. :calendar:

    weekly-digest 
    opened by weekly-digest[bot] 0
  • Weekly Digest (8 September, 2019 - 15 September, 2019)

    Weekly Digest (8 September, 2019 - 15 September, 2019)

    Here's the Weekly Digest for ShixiangWang/ezcox:


    ISSUES

    Last week, no issues were created.


    PULL REQUESTS

    Last week, no pull requests were created, updated or merged.


    COMMITS

    Last week there were no commits.


    CONTRIBUTORS

    Last week there were no contributors.


    STARGAZERS

    Last week there were no stargazers.


    RELEASES

    Last week there were no releases.


    That's all for last week, please :eyes: Watch and :star: Star the repository ShixiangWang/ezcox to receive next weekly updates. :smiley:

    You can also view all Weekly Digests by clicking here.

    Your Weekly Digest bot. :calendar:

    weekly-digest 
    opened by weekly-digest[bot] 0
  • Weekly Digest (1 September, 2019 - 8 September, 2019)

    Weekly Digest (1 September, 2019 - 8 September, 2019)

    Here's the Weekly Digest for ShixiangWang/ezcox:


    ISSUES

    Last week, no issues were created.


    PULL REQUESTS

    Last week, no pull requests were created, updated or merged.


    COMMITS

    Last week there were no commits.


    CONTRIBUTORS

    Last week there were no contributors.


    STARGAZERS

    Last week there were no stargazers.


    RELEASES

    Last week there were no releases.


    That's all for last week, please :eyes: Watch and :star: Star the repository ShixiangWang/ezcox to receive next weekly updates. :smiley:

    You can also view all Weekly Digests by clicking here.

    Your Weekly Digest bot. :calendar:

    weekly-digest 
    opened by weekly-digest[bot] 0
  • Weekly Digest (28 August, 2019 - 4 September, 2019)

    Weekly Digest (28 August, 2019 - 4 September, 2019)

    Here's the Weekly Digest for ShixiangWang/ezcox:


    ISSUES

    Last week, no issues were created.


    PULL REQUESTS

    Last week, no pull requests were created, updated or merged.


    COMMITS

    Last week there were no commits.


    CONTRIBUTORS

    Last week there were no contributors.


    STARGAZERS

    Last week there were no stargazers.


    RELEASES

    Last week there were no releases.


    That's all for last week, please :eyes: Watch and :star: Star the repository ShixiangWang/ezcox to receive next weekly updates. :smiley:

    You can also view all Weekly Digests by clicking here.

    Your Weekly Digest bot. :calendar:

    weekly-digest 
    opened by weekly-digest[bot] 0
Releases(v1.0.1)
Owner
Shixiang Wang
Don't Program by Coincidence.
Shixiang Wang
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022