The 2nd place solution of 2021 google landmark retrieval on kaggle.

Overview

Google_Landmark_Retrieval_2021_2nd_Place_Solution

The 2nd place solution of 2021 google landmark retrieval on kaggle.

Environment

We use cuda 11.1/python 3.7/torch 1.9.1/torchvision 0.8.1 for training and testing.

Download imagenet pretrained model ResNeXt101ibn and SEResNet101ibn from IBN-Net. ResNest101 and ResNeSt269 can be found in ResNest.

Prepare data

  1. Download GLDv2 full version from the official site.

  2. Run python tools/generate_gld_list.py. This will generate clean, c2x, trainfull and all data for different stage of training.

  3. Validation annotation comes from all 1129 images in GLDv2. We expand the competition index set to index_expand. Each query could find all its GTs in the expanded index set and the validation could be more accurate.

Train

We use 8 GPU (32GB/16GB) for training. The evaluation metric in landmark retrieval is different from person re-identification. Due to the validation scale, we skip the validation stage during training and just use the model from last epoch for evaluation.

Fast Train Script

To make quick experiments, we provide scripts for R50_256 trained for clean subset. This setting trains very fast and is helpful for debug.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml

Whole Train Pipeline

The whole training pipeline for SER101ibn backbone is listed below. Other backbones and input size can be modified accordingly.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml

Inference(notebooks)

  • With four models trained, cd to submission/code/ and modify settings in landmark_retrieval.py properly.

  • Then run eval_retrieval.sh to get submission file and evaluate on validation set offline.

General Settings

REID_EXTRACT_FLAG: Skip feature extraction when using offline code.
FEAT_DIR: Save cached features.
IMAGE_DIR: competition image dir. We make a soft link for competition data at submission/input/landmark-retrieval-2021/
RAW_IMAGE_DIR: origin GLDv2 dir
MODEL_DIR: the latest models for submission
META_DIR: saves meta files for rerank purpose
LOCAL_MATCHING and KR_FLAG disabled for our submission.

Fast Inference Script

Use R50_256 model trained from clean subset correspongding to the fast train script. Set CATEGORY_RERANK and REF_SET_EXTRACT to False. You will get about mAP=32.84% for the validation set.

Whole Inference Pipeline

  • Copy cache_all_list.pkl, cache_index_train_list.pkl and cache_full_list.pkl from cache to submission/input/meta-data-final

  • Set REF_SET_EXTRACT to True to extract features for all images of GLDv2. This will save about 4.9 million 512 dim features for each model in submission/input/meta-data-final.

  • Set REF_SET_EXTRACT to False and CATEGORY_RERANK to before_merge. This will load the precomputed features and run the proposed Landmark-Country aware rerank.

  • The notebooks on kaggle is exactly the same file as in base_landmark.py and landmark_retrieval.py. We also upload the same notebooks as in kaggle in kaggle.ipynb.

Kaggle and ICCV workshops

  • The challenge is held on kaggle and the leaderboard can be found here. We rank 2nd(2/263) in this challenge.

  • Kaggle Discussion post link here

  • ICCV workshop slides coming soon.

Thanks

The code is motivated by AICITY2021_Track2_DMT, 2020_1st_recognition_solution, 2020_2nd_recognition_solution, 2020_1st_retrieval_solution.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{zhang2021landmark,
 title={2nd Place Solution to Google Landmark Retrieval 2021},
 author={Zhang, Yuqi and Xu, Xianzhe and Chen, Weihua and Wang, Yaohua and Zhang, Fangyi},
 year={2021}
}
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022