The 2nd place solution of 2021 google landmark retrieval on kaggle.

Overview

Google_Landmark_Retrieval_2021_2nd_Place_Solution

The 2nd place solution of 2021 google landmark retrieval on kaggle.

Environment

We use cuda 11.1/python 3.7/torch 1.9.1/torchvision 0.8.1 for training and testing.

Download imagenet pretrained model ResNeXt101ibn and SEResNet101ibn from IBN-Net. ResNest101 and ResNeSt269 can be found in ResNest.

Prepare data

  1. Download GLDv2 full version from the official site.

  2. Run python tools/generate_gld_list.py. This will generate clean, c2x, trainfull and all data for different stage of training.

  3. Validation annotation comes from all 1129 images in GLDv2. We expand the competition index set to index_expand. Each query could find all its GTs in the expanded index set and the validation could be more accurate.

Train

We use 8 GPU (32GB/16GB) for training. The evaluation metric in landmark retrieval is different from person re-identification. Due to the validation scale, we skip the validation stage during training and just use the model from last epoch for evaluation.

Fast Train Script

To make quick experiments, we provide scripts for R50_256 trained for clean subset. This setting trains very fast and is helpful for debug.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml

Whole Train Pipeline

The whole training pipeline for SER101ibn backbone is listed below. Other backbones and input size can be modified accordingly.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml

Inference(notebooks)

  • With four models trained, cd to submission/code/ and modify settings in landmark_retrieval.py properly.

  • Then run eval_retrieval.sh to get submission file and evaluate on validation set offline.

General Settings

REID_EXTRACT_FLAG: Skip feature extraction when using offline code.
FEAT_DIR: Save cached features.
IMAGE_DIR: competition image dir. We make a soft link for competition data at submission/input/landmark-retrieval-2021/
RAW_IMAGE_DIR: origin GLDv2 dir
MODEL_DIR: the latest models for submission
META_DIR: saves meta files for rerank purpose
LOCAL_MATCHING and KR_FLAG disabled for our submission.

Fast Inference Script

Use R50_256 model trained from clean subset correspongding to the fast train script. Set CATEGORY_RERANK and REF_SET_EXTRACT to False. You will get about mAP=32.84% for the validation set.

Whole Inference Pipeline

  • Copy cache_all_list.pkl, cache_index_train_list.pkl and cache_full_list.pkl from cache to submission/input/meta-data-final

  • Set REF_SET_EXTRACT to True to extract features for all images of GLDv2. This will save about 4.9 million 512 dim features for each model in submission/input/meta-data-final.

  • Set REF_SET_EXTRACT to False and CATEGORY_RERANK to before_merge. This will load the precomputed features and run the proposed Landmark-Country aware rerank.

  • The notebooks on kaggle is exactly the same file as in base_landmark.py and landmark_retrieval.py. We also upload the same notebooks as in kaggle in kaggle.ipynb.

Kaggle and ICCV workshops

  • The challenge is held on kaggle and the leaderboard can be found here. We rank 2nd(2/263) in this challenge.

  • Kaggle Discussion post link here

  • ICCV workshop slides coming soon.

Thanks

The code is motivated by AICITY2021_Track2_DMT, 2020_1st_recognition_solution, 2020_2nd_recognition_solution, 2020_1st_retrieval_solution.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{zhang2021landmark,
 title={2nd Place Solution to Google Landmark Retrieval 2021},
 author={Zhang, Yuqi and Xu, Xianzhe and Chen, Weihua and Wang, Yaohua and Zhang, Fangyi},
 year={2021}
}
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023