PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

Overview

SLAPS-GNN

This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks.

Datasets

ogbn-arxiv dataset will be loaded automatically, while Cora, Citeseer, and Pubmed are included in the GCN package, available here. Place the relevant files in the folder data_tf.

Dependencies

To train the models, you need a machine with a GPU.

To install the dependencies, it is recommended to use a virtual environment. You can create a virtual environment and install all the dependencies with the following command:

conda env create -f environment.yml

The file requirements.txt was written for CUDA 9.2 and Linux so you may need to adapt it to your infrastructure.

Usage

To run the model you should define the following parameters:

  • dataset: The dataset you want to run the model on
  • ntrials: number of runs
  • epochs_adj: number of epochs
  • epochs: number of epochs for GNN_C (used for knn_gcn and 2step learning of the model)
  • lr_adj: learning rate of GNN_DAE
  • lr: learning rate of GNN_C
  • w_decay_adj: l2 regularization parameter for GNN_DAE
  • w_decay: l2 regularization parameter for GNN_C
  • nlayers_adj: number of layers for GNN_DAE
  • nlayers: number of layers for GNN_C
  • hidden_adj: hidden size of GNN_DAE
  • hidden: hidden size of GNN_C
  • dropout1: dropout rate for GNN_DAE
  • dropout2: dropout rate for GNN_C
  • dropout_adj1: dropout rate on adjacency matrix for GNN_DAE
  • dropout_adj2: dropout rate on adjacency matrix for GNN_C
  • dropout2: dropout rate for GNN_C
  • k: k for knn initialization with knn
  • lambda_: weight of loss of GNN_DAE
  • nr: ratio of zeros to ones to mask out for binary features
  • ratio: ratio of ones to mask out for binary features and ratio of features to mask out for real values features
  • model: model to run (choices are end2end, knn_gcn, or 2step)
  • sparse: whether to make the adjacency sparse and run operations on sparse mode
  • gen_mode: identifies the graph generator
  • non_linearity: non-linearity to apply on the adjacency matrix
  • mlp_act: activation function to use for the mlp graph generator
  • mlp_h: hidden size of the mlp graph generator
  • noise: type of noise to add to features (mask or normal)
  • loss: type of GNN_DAE loss (mse or bce)
  • epoch_d: epochs_adj / epoch2 of the epochs will be used for training GNN_DAE
  • half_val_as_train: use half of validation for train to get Cora390 and Citeseer370

Reproducing the Results in the Paper

In order to reproduce the results presented in the paper, you should run the following commands:

Cora

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5

Citeseer

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.4 -dropout_adj2 0.4 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act relu -mlp_h 3703 -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5

Cora390

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 100.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5 -half_val_as_train 1

Citeseer370

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.25 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act tanh -mlp_h 3703 -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -half_val_as_train 1

Pubmed

MLP

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 20 -model end2end -gen_mode 1 -non_linearity relu -mlp_h 500 -mlp_act relu -epoch_d 5 -sparse 1

MLP-D

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.25 -k 15 -lambda_ 100.0 -nr 5 -ratio 20 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -sparse 1

ogbn-arxiv

MLP

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 128 -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise mask

MLP-D

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise normal

Cite SLAPS

If you use this package for published work, please cite the following:

@inproceedigs{fatemi2021slaps,
  title={SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks},
  author={Fatemi, Bahare and Asri, Layla El and Kazemi, Seyed Mehran},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022