Implementation of SiameseXML (ICML 2021)

Overview

SiameseXML

Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels


Best Practices for features creation


  • Adding sub-words on top of unigrams to the vocabulary can help in training more accurate embeddings and classifiers.

Setting up


Expected directory structure

+-- <work_dir>
|  +-- programs
|  |  +-- siamesexml
|  |    +-- siamesexml
|  +-- data
|    +-- <dataset>
|  +-- models
|  +-- results

Download data for SiameseXML

* Download the (zipped file) BoW features from XML repository.  
* Extract the zipped file into data directory. 
* The following files should be available in <work_dir>/data/<dataset> for new datasets (ignore the next step)
    - trn_X_Xf.txt
    - trn_X_Y.txt
    - tst_X_Xf.txt
    - lbl_X_Xf.txt
    - tst_X_Y.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy
* The following files should be available in <work_dir>/data/<dataset> if the dataset is in old format (please refer to next step to convert the data to new format)
    - train.txt
    - test.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy 

Convert to new data format

# A perl script is provided (in siamesexml/tools) to convert the data into new format
# Either set the $data_dir variable to the data directory of a particular dataset or replace it with the path
perl convert_format.pl $data_dir/train.txt $data_dir/trn_X_Xf.txt $data_dir/trn_X_Y.txt
perl convert_format.pl $data_dir/test.txt $data_dir/tst_X_Xf.txt $data_dir/tst_X_Y.txt

Example use cases


A single learner

The given code can be utilized as follows. A json file is used to specify architecture and other arguments. Please refer to the full documentation below for more details.

./run_main.sh 0 SiameseXML LF-AmazonTitles-131K 0 108

Full Documentation

./run_main.sh <gpu_id> <type> <dataset> <version> <seed>

* gpu_id: Run the program on this GPU.

* type
  SiameseXML uses DeepXML[2] framework for training. The classifier is trained in M-IV.
  - SiameseXML: The intermediate representation is not fine-tuned while training the classifier (more scalable; suitable for large datasets).
  - SiameseXML++: The intermediate representation is fine-tuned while training the classifier (leads to better accuracy on some datasets).

* dataset
  - Name of the dataset.
  - SiameseXML expects the following files in <work_dir>/data/<dataset>
    - trn_X_Xf.txt
    - trn_X_Y.txt
    - tst_X_Xf.txt
    - lbl_X_Xf.txt
    - tst_X_Y.txt
    - fasttextB_embeddings_300d.npy or fasttextB_embeddings_512d.npy
  - You can set the 'embedding_dims' in config file to switch between 300d and 512d embeddings.

* version
  - different runs could be managed by version and seed.
  - models and results are stored with this argument.

* seed
  - seed value as used by numpy and PyTorch.

Notes

* Other file formats such as npy, npz, pickle are also supported.
* Initializing with token embeddings (computed from FastText) leads to noticible accuracy gains. Please ensure that the token embedding file is available in data directory, if 'init=token_embeddings', otherwise it'll throw an error.
* Config files are made available in siamesexml/configs/<framework>/<method> for datasets in XC repository. You can use them when trying out the given code on new datasets.
* We conducted our experiments on a 24-core Intel Xeon 2.6 GHz machine with 440GB RAM with a single Nvidia P40 GPU. 128GB memory should suffice for most datasets.
* The code make use of CPU (mainly for hnswlib) as well as GPU. 

Cite as

@InProceedings{Dahiya21b,
    author = "Dahiya, K. and Agarwal, A. and Saini, D. and Gururaj, K. and Jiao, J. and Singh, A. and Agarwal, S. and Kar, P. and Varma, M",
    title = "SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels",
    booktitle = "Proceedings of the International Conference on Machine Learning",
    month = "July",
    year = "2021"
}

YOU MAY ALSO LIKE

References


[1] K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao, A. Singh, S. Agarwal, P. Kar and M. Varma. SiameseXML: Siamese networks meet extreme classifiers with 100M labels. In ICML, July 2021

[2] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma. Deepxml: A deep extreme multi-label learning framework applied to short text documents. In WSDM, 2021.

[3] pyxclib: https://github.com/kunaldahiya/pyxclib

Owner
Extreme Classification
Extreme Classification
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022