Segmentation for medical image.

Overview

EfficientSegmentation

Introduction

EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image.

Features

  • A whole-volume-based coarse-to-fine segmentation framework. The segmentation network is decomposed into different components, including encoder, decoder and context module. Anisotropic convolution block and anisotropic context block are designed for efficient and effective segmentation.
  • Pre-process data in multi-process. Distributed and Apex training support. Postprocess is performed asynchronously in inference stage.

Benchmark

Task Architecture Parameters(MB) Flops(GB) DSC NSC Inference time(s) GPU memory(MB)
FLARE21 BaseUNet 11 812 0.908 0.837 0.92 3183
FLARE21 EfficientSegNet 9 333 0.919 0.848 0.46 2269

Installation

Installation by docker image

  • Download the docker image.
  link: https://pan.baidu.com/s/1UkMwdntwAc5paCWHoZHj9w 
  password:9m3z
  • Put the abdomen CT image in current folder $PWD/inputs/.
  • Run the testing cases with the following code:
docker image load < fosun_aitrox.tgz
nvidia-docker container run --name fosun_aitrox --rm -v $PWD/inputs/:/workspace/inputs/ -v $PWD/outputs/:/workspace/outputs/ fosun_aitrox:latest /bin/bash -c "sh predict.sh"'

Installation step by step

Environment

  • Ubuntu 16.04.12
  • Python 3.6+
  • Pytorch 1.5.0+
  • CUDA 10.0+

1.Git clone

git clone https://github.com/Shanghai-Aitrox-Technology/EfficientSegmentation.git

2.Install Nvidia Apex

  • Perform the following command:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir ./

3.Install dependencies

pip install -r requirements.txt

Get Started

preprocessing

  1. Download FLARE21, resulting in 361 training images and masks, 50 validation images.
  2. Copy image and mask to 'FlareSeg/dataset/' folder.
  3. Edit the 'FlareSeg/data_prepare/config.yaml'. 'DATA_BASE_DIR'(Default: FlareSeg/dataset/) is the base dir of databases. If set the 'IS_SPLIT_5FOLD'(Default: False) to true, 5-fold cross-validation datasets will be generated.
  4. Run the data preprocess with the following command:
python FlareSeg/data_prepare/run.py

The image data and lmdb file are stored in the following structure:

DATA_BASE_DIR directory structure:
├── train_images
   ├── train_000_0000.nii.gz
   ├── train_001_0000.nii.gz
   ├── train_002_0000.nii.gz
   ├── ...
├── train_mask
   ├── train_000.nii.gz
   ├── train_001.nii.gz
   ├── train_002.nii.gz
   ├── ...
└── val_images
    ├── validation_001_0000.nii.gz
    ├── validation_002_0000.nii.gz
    ├── validation_003_0000.nii.gz
    ├── ...
├── file_list
    ├──'train_series_uids.txt', 
    ├──'val_series_uids.txt',
    ├──'lesion_case.txt',
├── db
    ├──seg_raw_train         # The 361 training data information.
    ├──seg_raw_test          # The 50 validation images information.
    ├──seg_train_database    # The default training database.
    ├──seg_val_database      # The default validation database.
    ├──seg_pre-process_database # Temporary database.
    ├──seg_train_fold_1
    ├──seg_val_fold_1
├── coarse_image
    ├──160_160_160
          ├── train_000.npy
          ├── train_001.npy
          ├── ...
├── coarse_mask
    ├──160_160_160
          ├── train_000.npy
          ├── train_001.npy
          ├── ...
├── fine_image
    ├──192_192_192
          ├── train_000.npy
          ├── train_001.npy
          ├──  ...
├── fine_mask
    ├──192_192_192
          ├── train_000.npy
          ├── train_001.npy
          ├── ...

The data information is stored in the lmdb file with the following format:

{
    series_id = {
        'image_path': data.image_path,
        'mask_path': data.mask_path,
        'smooth_mask_path': data.smooth_mask_path,
        'coarse_image_path': data.coarse_image_path,
        'coarse_mask_path': data.coarse_mask_path,
        'fine_image_path': data.fine_image_path,
        'fine_mask_path': data.fine_mask_path
    }
}

Training

Remark: Coarse segmentation is trained on Nvidia GeForce 2080Ti(Number:8) in the experiment, while fine segmentation on Nvidia A100(Number:4). If you use different hardware, please set the "ENVIRONMENT.NUM_GPU", "DATA_LOADER.NUM_WORKER" and "DATA_LOADER.BATCH_SIZE" in 'FlareSeg/coarse_base_seg/config.yaml' and 'FlareSeg/fine_efficient_seg/config.yaml' files.

Coarse segmentation:

  • Edit the 'FlareSeg/coarse_base_seg/config.yaml'
  • Train coarse segmentation with the following command:
cd FlareSeg/coarse_base_seg
sh run.sh

Fine segmentation:

  • Edit the 'FlareSeg/fine_efficient_seg/config.yaml'.
  • Edit the 'FlareSeg/fine_efficient_seg/run.py', set the 'tune_params' for different experiments.
  • Train fine segmentation with the following command:
cd  FlareSeg/fine_efficient_seg
sh run.sh

Inference:

  • The model weights are stored in 'FlareSeg/model_weights/'.
  • Run the inference with the following command:
sh predict.sh

Contact

This repository is currently maintained by Fan Zhang ([email protected]) and Yu Wang ([email protected])

Citation

Acknowledgement

AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023