ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Related tags

Deep Learningalbert
Overview

ALBERT

***************New March 28, 2020 ***************

Add a colab tutorial to run fine-tuning for GLUE datasets.

***************New January 7, 2020 ***************

v2 TF-Hub models should be working now with TF 1.15, as we removed the native Einsum op from the graph. See updated TF-Hub links below.

***************New December 30, 2019 ***************

Chinese models are released. We would like to thank CLUE team for providing the training data.

Version 2 of ALBERT models is released.

In this version, we apply 'no dropout', 'additional training data' and 'long training time' strategies to all models. We train ALBERT-base for 10M steps and other models for 3M steps.

The result comparison to the v1 models is as followings:

Average SQuAD1.1 SQuAD2.0 MNLI SST-2 RACE
V2
ALBERT-base 82.3 90.2/83.2 82.1/79.3 84.6 92.9 66.8
ALBERT-large 85.7 91.8/85.2 84.9/81.8 86.5 94.9 75.2
ALBERT-xlarge 87.9 92.9/86.4 87.9/84.1 87.9 95.4 80.7
ALBERT-xxlarge 90.9 94.6/89.1 89.8/86.9 90.6 96.8 86.8
V1
ALBERT-base 80.1 89.3/82.3 80.0/77.1 81.6 90.3 64.0
ALBERT-large 82.4 90.6/83.9 82.3/79.4 83.5 91.7 68.5
ALBERT-xlarge 85.5 92.5/86.1 86.1/83.1 86.4 92.4 74.8
ALBERT-xxlarge 91.0 94.8/89.3 90.2/87.4 90.8 96.9 86.5

The comparison shows that for ALBERT-base, ALBERT-large, and ALBERT-xlarge, v2 is much better than v1, indicating the importance of applying the above three strategies. On average, ALBERT-xxlarge is slightly worse than the v1, because of the following two reasons: 1) Training additional 1.5 M steps (the only difference between these two models is training for 1.5M steps and 3M steps) did not lead to significant performance improvement. 2) For v1, we did a little bit hyperparameter search among the parameters sets given by BERT, Roberta, and XLnet. For v2, we simply adopt the parameters from v1 except for RACE, where we use a learning rate of 1e-5 and 0 ALBERT DR (dropout rate for ALBERT in finetuning). The original (v1) RACE hyperparameter will cause model divergence for v2 models. Given that the downstream tasks are sensitive to the fine-tuning hyperparameters, we should be careful about so called slight improvements.

ALBERT is "A Lite" version of BERT, a popular unsupervised language representation learning algorithm. ALBERT uses parameter-reduction techniques that allow for large-scale configurations, overcome previous memory limitations, and achieve better behavior with respect to model degradation.

For a technical description of the algorithm, see our paper:

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut

Release Notes

  • Initial release: 10/9/2019

Results

Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:

Models MNLI QNLI QQP RTE SST MRPC CoLA STS
BERT-large 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0
XLNet-large 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8
RoBERTa-large 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4
ALBERT (1M) 90.4 95.2 92.0 88.1 96.8 90.2 68.7 92.7
ALBERT (1.5M) 90.8 95.3 92.2 89.2 96.9 90.9 71.4 93.0

Performance of ALBERT-xxl on SQuaD and RACE benchmarks using a single-model setup:

Models SQuAD1.1 dev SQuAD2.0 dev SQuAD2.0 test RACE test (Middle/High)
BERT-large 90.9/84.1 81.8/79.0 89.1/86.3 72.0 (76.6/70.1)
XLNet 94.5/89.0 88.8/86.1 89.1/86.3 81.8 (85.5/80.2)
RoBERTa 94.6/88.9 89.4/86.5 89.8/86.8 83.2 (86.5/81.3)
UPM - - 89.9/87.2 -
XLNet + SG-Net Verifier++ - - 90.1/87.2 -
ALBERT (1M) 94.8/89.2 89.9/87.2 - 86.0 (88.2/85.1)
ALBERT (1.5M) 94.8/89.3 90.2/87.4 90.9/88.1 86.5 (89.0/85.5)

Pre-trained Models

TF-Hub modules are available:

Example usage of the TF-Hub module in code:

tags = set()
if is_training:
  tags.add("train")
albert_module = hub.Module("https://tfhub.dev/google/albert_base/1", tags=tags,
                           trainable=True)
albert_inputs = dict(
    input_ids=input_ids,
    input_mask=input_mask,
    segment_ids=segment_ids)
albert_outputs = albert_module(
    inputs=albert_inputs,
    signature="tokens",
    as_dict=True)

# If you want to use the token-level output, use
# albert_outputs["sequence_output"] instead.
output_layer = albert_outputs["pooled_output"]

Most of the fine-tuning scripts in this repository support TF-hub modules via the --albert_hub_module_handle flag.

Pre-training Instructions

To pretrain ALBERT, use run_pretraining.py:

pip install -r albert/requirements.txt
python -m albert.run_pretraining \
    --input_file=... \
    --output_dir=... \
    --init_checkpoint=... \
    --albert_config_file=... \
    --do_train \
    --do_eval \
    --train_batch_size=4096 \
    --eval_batch_size=64 \
    --max_seq_length=512 \
    --max_predictions_per_seq=20 \
    --optimizer='lamb' \
    --learning_rate=.00176 \
    --num_train_steps=125000 \
    --num_warmup_steps=3125 \
    --save_checkpoints_steps=5000

Fine-tuning on GLUE

To fine-tune and evaluate a pretrained ALBERT on GLUE, please see the convenience script run_glue.sh.

Lower-level use cases may want to use the run_classifier.py script directly. The run_classifier.py script is used both for fine-tuning and evaluation of ALBERT on individual GLUE benchmark tasks, such as MNLI:

pip install -r albert/requirements.txt
python -m albert.run_classifier \
  --data_dir=... \
  --output_dir=... \
  --init_checkpoint=... \
  --albert_config_file=... \
  --spm_model_file=... \
  --do_train \
  --do_eval \
  --do_predict \
  --do_lower_case \
  --max_seq_length=128 \
  --optimizer=adamw \
  --task_name=MNLI \
  --warmup_step=1000 \
  --learning_rate=3e-5 \
  --train_step=10000 \
  --save_checkpoints_steps=100 \
  --train_batch_size=128

Good default flag values for each GLUE task can be found in run_glue.sh.

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

You can find the spm_model_file in the tar files or under the assets folder of the tf-hub module. The name of the model file is "30k-clean.model".

After evaluation, the script should report some output like this:

***** Eval results *****
  global_step = ...
  loss = ...
  masked_lm_accuracy = ...
  masked_lm_loss = ...
  sentence_order_accuracy = ...
  sentence_order_loss = ...

Fine-tuning on SQuAD

To fine-tune and evaluate a pretrained model on SQuAD v1, use the run_squad_v1.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v1 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train=true \
  --do_predict=true \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

For SQuAD v2, use the run_squad_v2.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v2 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train \
  --do_predict \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

Fine-tuning on RACE

For RACE, use the run_race.py script:

pip install -r albert/requirements.txt
python -m albert.run_race \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --eval_file=... \
  --data_dir=...\
  --init_checkpoint=... \
  --spm_model_file=... \
  --max_seq_length=512 \
  --max_qa_length=128 \
  --do_train \
  --do_eval \
  --train_batch_size=32 \
  --eval_batch_size=8 \
  --learning_rate=1e-5 \
  --train_step=12000 \
  --warmup_step=1000 \
  --save_checkpoints_steps=100

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

SentencePiece

Command for generating the sentence piece vocabulary:

spm_train \
--input all.txt --model_prefix=30k-clean --vocab_size=30000 --logtostderr
--pad_id=0 --unk_id=1 --eos_id=-1 --bos_id=-1
--control_symbols=[CLS],[SEP],[MASK]
--user_defined_symbols="(,),\",-,.,–,£,€"
--shuffle_input_sentence=true --input_sentence_size=10000000
--character_coverage=0.99995 --model_type=unigram
Owner
Google Research
Google Research
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022