Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Related tags

Deep LearningHOTR
Overview


Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation)

HOTR: End-to-End Human-Object Interaction Detection with Transformers

HOTR is a novel framework which directly predicts a set of {human, object, interaction} triplets from an image using a transformer-based encoder-decoder. Through the set-level prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.

HOTR is composed of three main components: a shared encoder with a CNN backbone, a parallel decoder, and the recomposition layer to generate final HOI triplets. The overview of our pipeline is presented below.

1. Environmental Setup

$ conda create -n kakaobrain python=3.7
$ conda install -c pytorch pytorch torchvision # PyTorch 1.7.1, torchvision 0.8.2, CUDA=11.0
$ conda install cython scipy
$ pip install pycocotools
$ pip install opencv-python
$ pip install wandb

2. HOI dataset setup

Our current version of HOTR supports the experiments for V-COCO dataset. Download the v-coco dataset under the pulled directory.

# V-COCO setup
$ git clone https://github.com/s-gupta/v-coco.git
$ cd v-coco
$ ln -s [:COCO_DIR] coco/images # COCO_DIR contains images of train2014 & val2014
$ python script_pick_annotations.py [:COCO_DIR]/annotations

If you wish to download the v-coco on our own directory, simply change the 'data_path' argument to the directory you have downloaded the v-coco dataset.

--data_path [:your_own_directory]/v-coco

3. How to Train/Test HOTR on V-COCO dataset

For testing, you can either use your own trained weights and pass the directory to the 'resume' argument, or use our provided weights. Below is the example of how you should edit the Makefile.

# [Makefile]
# Testing your own trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/KakaoBrain/multi_run_000001/best.pth # the best performing checkpoint is saved in this format

# Testing our provided trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/q16.pth # download the q16.pth as described below.

In order to use our provided weights, you can download the weights from this link. Then, pass the directory of the downloaded file (for example, we put the weights under the directory checkpoints/vcoco/q16.pth) to the 'resume' argument as well.

# multi-gpu training / testing (8 GPUs)
$ make multi_[train/test]

# single-gpu training / testing
$ make single_[train/test]

4. Results

Here, we provide improved results of V-COCO Scenario 1 (58.9 mAP, 0.5ms) from the version of our initial submission (55.2 mAP, 0.9ms). This is obtained "without" applying any priors on the scores (see iCAN).

Epoch # queries Scenario 1 Scenario 2 Checkpoint
100 16 58.9 63.8 download

If you want to use pretrained weights for inference, download the pretrained weights (from the above link) under checkpoints/vcoco/ and match the interaction query argument as described in the weight file (others are already set in the Makefile). Our evaluation code follows the exact implementations of the official python v-coco evaluation. You can test the weights by the command below (e.g., the weight file is named as q16.pth, which denotes that the model uses 16 interaction queries).

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env vcoco_main.py \
    --batch_size 2 \
    --HOIDet \
    --share_enc \
    --pretrained_dec \
    --num_hoi_queries [:query_num] \
    --temperature 0.05 \ # use the exact same temperature value that you used during training!
    --object_threshold 0 \
    --no_aux_loss \
    --eval \
    --dataset_file vcoco \
    --data_path v-coco \
    --resume checkpoints/vcoco/[:query_num].pth

The results will appear as the following:

[Logger] Number of params:  51181950
Evaluation Inference (V-COCO)  [308/308]  eta: 0:00:00    time: 0.2063  data: 0.0127  max mem: 1578
[stats] Total Time (test) : 0:01:05 (0.2114 s / it)
[stats] HOI Recognition Time (avg) : 0.5221 ms
[stats] Distributed Gathering Time : 0:00:49
[stats] Score Matrix Generation completed

============= AP (Role scenario_1) ==============
               hold_obj: AP = 48.99 (#pos = 3608)
              sit_instr: AP = 47.81 (#pos = 1916)
             ride_instr: AP = 67.04 (#pos = 556)
               look_obj: AP = 40.57 (#pos = 3347)
              hit_instr: AP = 76.42 (#pos = 349)
                hit_obj: AP = 71.27 (#pos = 349)
                eat_obj: AP = 55.75 (#pos = 521)
              eat_instr: AP = 67.57 (#pos = 521)
             jump_instr: AP = 71.44 (#pos = 635)
              lay_instr: AP = 57.09 (#pos = 387)
    talk_on_phone_instr: AP = 49.07 (#pos = 285)
              carry_obj: AP = 34.75 (#pos = 472)
              throw_obj: AP = 52.37 (#pos = 244)
              catch_obj: AP = 48.80 (#pos = 246)
              cut_instr: AP = 49.58 (#pos = 269)
                cut_obj: AP = 57.02 (#pos = 269)
 work_on_computer_instr: AP = 67.44 (#pos = 410)
              ski_instr: AP = 49.35 (#pos = 424)
             surf_instr: AP = 77.07 (#pos = 486)
       skateboard_instr: AP = 86.44 (#pos = 417)
            drink_instr: AP = 38.67 (#pos = 82)
               kick_obj: AP = 73.92 (#pos = 180)
               read_obj: AP = 44.81 (#pos = 111)
        snowboard_instr: AP = 81.25 (#pos = 277)
| mAP(role scenario_1): 58.94
----------------------------------------------------

The HOI recognition time is calculated by the end-to-end inference time excluding the object detection time.

5. Auxiliary Loss

HOTR follows the auxiliary loss of DETR, where the loss between the ground truth and each output of the decoder layer is also computed. The ground-truth for the auxiliary outputs are matched with the ground-truth HOI triplets with our proposed Hungarian Matcher.

6. Temperature Hyperparameter, tau

Based on our experimental results, the temperature hyperparameter is sensitive to the number of interaction queries and the coefficient for the index loss and index cost, and the number of decoder layers. Empirically, a larger number of queries require a larger tau, and a smaller coefficient for the loss and cost for HO Pointers requires a smaller tau (e.g., for 16 interaction queries, tau=0.05 for the default set_cost_idx=1, hoi_idx_loss_coef=1, hoi_act_loss_coef=10 shows the best result). The initial version of HOTR (with 55.2 mAP) has been trained with 100 queries, which required a larger tau (tau=0.1). There might be better results than the tau we used in our paper according to these three factors. Feel free to explore yourself!

7. Citation

If you find this code helpful for your research, please cite our paper.

@inproceedings{kim2021hotr,
  title={HOTR: End-to-End Human-Object Interaction Detection with Transformers},
  author    = {Bumsoo Kim and
               Junhyun Lee and
               Jaewoo Kang and
               Eun-Sol Kim and
               Hyunwoo J. Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

8. Contact for Issues

Bumsoo Kim, [email protected]

9. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022