《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Overview

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation


Overview


This is the demo code for training a motion invariant encoding network. The following diagram provides an overview of the network structure.

For more information, please visit http://geometry.cs.ucl.ac.uk/projects/2019/garment_authoring/

network

Structure


The project's directory is shown as follows. The data set is in the data_set folder, including cloth mesh(generated by Maya Qualoth), garment template, character animation and skeletons. Some supporting files can be found in support. The shape feature descriptor and motion invariant encoding network are saved in nnet.

├─data_set
│  ├─anim
│  ├─case
│  ├─garment
│  ├─skeleton
│  └─Maya
├─nnet
│  ├─basis
│  └─mie
├─support
│  ├─eval_basis
│  ├─eval_mie
│  ├─info_basis
│  └─info_mie
└─scripts

In the scripts folder, there are several python scripts which implement the training process. We also provide a data set for testing, generated from a sequence of dancing animation and a skirt.

Data Set


The data set includes not only the meshes and garment template, but also some supporting information. You can check the animation in the Maya folder. The animation information is saved in the anim folder. In the case folder, there are many meshes generated by Qualoth in different simulation parameters. The garment template is in the garment folder.

network

Installation


  • Clone the repo:
git clone https://github.com/YuanBoot/Intrinsic_Garment_Space.git

Model Training


Shape Descriptor

After all preparing works done, you can start to train the network. In scripts folder, some scripts named basis_* are used for training shape descriptor.

Run them as follows:

01.basis_prepare.py (data preparing)

02.basis_train.py (training)

03.basis_eval.py (evaluation)

After running 01 and 02 scripts, there will be a *.net file in the nnet/basis folder. It is the shape feature descriptor.

The result of a specific frame after running 03.basis_eval.py script. The yellow skirt is our output and the blue one is the ground truth. If the loss of the descriptor is low enough, these two skirt are almost overlap.

f2

Motion Invariant Encoding

Then, you can run mie_*.py scripts to get the motion invariant encoding network.

04.mie_prepare.py (data preparing)

05.mie_train.py (training)

06.mie_eval.py (evaluation)

If everything goes well, the exported mesh would be like the following figures. For the output from06.mie_eval.py is painted by red and the green one is the ground truth.

f3

Owner
YuanBo
YuanBo
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022