This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

Related tags

Deep LearningCORA
Overview

CORA

This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval. Preptint. 2021.

cora_image

In this paper, we introduce CORA, a single, unified multilingual open QA model for many languages.
CORA consists of two main components: mDPR and mGEN.
mDPR retrieves documents from multilingual document collections and mGEN generates the answer in the target languages directly instead of using any external machine translation or language-specific retrieval module.
Our experimental results show state-of-the-art results across two multilingual open QA dataset: XOR QA and MKQA.

Contents

  1. Quick Run on XOR QA
  2. Overview
  3. Data
  4. Installation
  5. Training
  6. Evaluation
  7. Citations and Contact

Quick Run on XOR QA

We provide quick_start_xorqa.sh, with which you can easily set up and run evaluation on the XOR QA full dev set.

The script will

  1. download our trained mDPR, mGEN and encoded Wikipedia embeddings,
  2. run the whole pipeline on the evaluation set, and
  3. calculate the QA scores.

You can download the prediction results from here.

Overview

To run CORA, you first need to preprocess Wikipedia using the codes in wikipedia_preprocess.
Then you train mDPR and mGEN.
Once you finish training those components, please run evaluations, and then evaluate the performance using eval_scripts.

Please see the details of each components in each directory.

  • mDPR: codes for training and evaluating our mDPR.
  • mGEN: codes for training and evaluating our mGEN.
  • wikipedia_preprocess: codes for preprocessing Wikipedias.
  • eval_scripts: scripts to evaluate the performance.

Data

Training data

We will upload the final training data for mDPR. Please stay tuned!

Evaluation data

We evaluate our models performance on XOR QA and MKQA.

  • XOR QA Please download the XOR QA (full) data by running the command below.
mkdir data
cd data
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_dev_full_v1_1.jsonl
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_test_full_q_only_v1_1.jsonl
cd ..
  • MKQA Please download the original MKQA data from the original repository.
wget https://github.com/apple/ml-mkqa/raw/master/dataset/mkqa.jsonl.gz
gunzip mkqa.jsonl.gz

Before evaluating on MKQA, you need to preprocess the MKQA data to convert them into the same format as XOR QA. Please follow the instructions at eval_scripts/README.md.

Installation

Dependencies

  • Python 3
  • PyTorch (currently tested on version 1.7.0)
  • Transformers (version 4.2.1; unlikely to work with a different version)

Trained models

You can download trained models by running the commands below:

mkdir models
wget https://nlp.cs.washington.edu/xorqa/cora/models/all_w100.tsv
wget https://nlp.cs.washington.edu/xorqa/cora/models/mGEN_model.zip
wget https://nlp.cs.washington.edu/xorqa/cora/models/mDPR_biencoder_best.cpt
unzip mGEN_model.zip
mkdir embeddings
cd embeddings
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_en_$i 
done
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_others_$i  
done
cd ../..

Training

CORA is trained with our iterative training process, where each iteration proceeds over two states: parameter updates and cross-lingual data expansion.

  1. Train mDPR with the current training data. For the first iteration, the training data is the gold paragraph data from Natural Questions and TyDi-XOR QA.
  2. Retrieve top documents using trained mDPR
  3. Train mGEN with retrieved data
  4. Run mGEN on each passages from mDPR and synthetic data retrieval to label the new training data.
  5. Go back to step 1.

overview_training

See the details of each training step in mDPR/README.md and mGEN/README.md.

Evaluation

  1. Run mDPR on the input data
python dense_retriever.py \
    --model_file ../models/mDPR_biencoder_best.cpt \
    --ctx_file ../models/all_w100.tsv \
    --qa_file ../data/xor_dev_full_v1_1.jsonl \
    --encoded_ctx_file "../models/embeddings/wiki_emb_*" \
    --out_file xor_dev_dpr_retrieval_results.json \
    --n-docs 20 --validation_workers 1 --batch_size 256 --add_lang
  1. Convert the retrieved results into mGEN input format
cd mGEN
python3 convert_dpr_retrieval_results_to_seq2seq.py \
    --dev_fp ../mDPR/xor_dev_dpr_retrieval_results.json \
    --output_dir xorqa_dev_final_retriever_results \
    --top_n 15 \
    --add_lang \
    --xor_engspan_train data/xor_train_retrieve_eng_span.jsonl \
    --xor_full_train data/xor_train_full.jsonl \
    --xor_full_dev data/xor_dev_full_v1_1.jsonl
  1. Run mGEN
CUDA_VISIBLE_DEVICES=0 python eval_mgen.py \
    --model_name_or_path \
    --evaluation_set xorqa_dev_final_retriever_results/val.source \
    --gold_data_path xorqa_dev_final_retriever_results/gold_para_qa_data_dev.tsv \
    --predictions_path xor_dev_final_results.txt \
    --gold_data_mode qa \
    --model_type mt5 \
    --max_length 20 \
    --eval_batch_size 4
cd ..
  1. Run the XOR QA full evaluation script
cd eval_scripts
python eval_xor_full.py --data_file ../data/xor_dev_full_v1_1.jsonl --pred_file ../mGEN/xor_dev_final_results.txt --txt_file

Baselines

In our paper, we have tested several baselines such as Translate-test or multilingual baselines. The codes for machine translations or BM 25-based retrievers are at baselines. To run the baselines, you may need to download code and mdoels from the XOR QA repository. Those codes are implemented by Velocity :)

Citations and Contact

If you find this codebase is useful or use in your work, please cite our paper.

@article{
asai2021cora,
title={One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval},
author={Akari Asai and Xinyan Yu and Jungo Kasai and Hannaneh Hajishirzi},
journal={Arxiv Preprint},
year={2021}
}

Please contact Akari Asai (@AkariAsai on Twitter, akari[at]cs.washington.edu) for questions and suggestions.

Owner
Akari Asai
PhD student at @uwnlp . NLP & ML.
Akari Asai
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022