This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

Related tags

Deep LearningCORA
Overview

CORA

This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval. Preptint. 2021.

cora_image

In this paper, we introduce CORA, a single, unified multilingual open QA model for many languages.
CORA consists of two main components: mDPR and mGEN.
mDPR retrieves documents from multilingual document collections and mGEN generates the answer in the target languages directly instead of using any external machine translation or language-specific retrieval module.
Our experimental results show state-of-the-art results across two multilingual open QA dataset: XOR QA and MKQA.

Contents

  1. Quick Run on XOR QA
  2. Overview
  3. Data
  4. Installation
  5. Training
  6. Evaluation
  7. Citations and Contact

Quick Run on XOR QA

We provide quick_start_xorqa.sh, with which you can easily set up and run evaluation on the XOR QA full dev set.

The script will

  1. download our trained mDPR, mGEN and encoded Wikipedia embeddings,
  2. run the whole pipeline on the evaluation set, and
  3. calculate the QA scores.

You can download the prediction results from here.

Overview

To run CORA, you first need to preprocess Wikipedia using the codes in wikipedia_preprocess.
Then you train mDPR and mGEN.
Once you finish training those components, please run evaluations, and then evaluate the performance using eval_scripts.

Please see the details of each components in each directory.

  • mDPR: codes for training and evaluating our mDPR.
  • mGEN: codes for training and evaluating our mGEN.
  • wikipedia_preprocess: codes for preprocessing Wikipedias.
  • eval_scripts: scripts to evaluate the performance.

Data

Training data

We will upload the final training data for mDPR. Please stay tuned!

Evaluation data

We evaluate our models performance on XOR QA and MKQA.

  • XOR QA Please download the XOR QA (full) data by running the command below.
mkdir data
cd data
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_dev_full_v1_1.jsonl
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_test_full_q_only_v1_1.jsonl
cd ..
  • MKQA Please download the original MKQA data from the original repository.
wget https://github.com/apple/ml-mkqa/raw/master/dataset/mkqa.jsonl.gz
gunzip mkqa.jsonl.gz

Before evaluating on MKQA, you need to preprocess the MKQA data to convert them into the same format as XOR QA. Please follow the instructions at eval_scripts/README.md.

Installation

Dependencies

  • Python 3
  • PyTorch (currently tested on version 1.7.0)
  • Transformers (version 4.2.1; unlikely to work with a different version)

Trained models

You can download trained models by running the commands below:

mkdir models
wget https://nlp.cs.washington.edu/xorqa/cora/models/all_w100.tsv
wget https://nlp.cs.washington.edu/xorqa/cora/models/mGEN_model.zip
wget https://nlp.cs.washington.edu/xorqa/cora/models/mDPR_biencoder_best.cpt
unzip mGEN_model.zip
mkdir embeddings
cd embeddings
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_en_$i 
done
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_others_$i  
done
cd ../..

Training

CORA is trained with our iterative training process, where each iteration proceeds over two states: parameter updates and cross-lingual data expansion.

  1. Train mDPR with the current training data. For the first iteration, the training data is the gold paragraph data from Natural Questions and TyDi-XOR QA.
  2. Retrieve top documents using trained mDPR
  3. Train mGEN with retrieved data
  4. Run mGEN on each passages from mDPR and synthetic data retrieval to label the new training data.
  5. Go back to step 1.

overview_training

See the details of each training step in mDPR/README.md and mGEN/README.md.

Evaluation

  1. Run mDPR on the input data
python dense_retriever.py \
    --model_file ../models/mDPR_biencoder_best.cpt \
    --ctx_file ../models/all_w100.tsv \
    --qa_file ../data/xor_dev_full_v1_1.jsonl \
    --encoded_ctx_file "../models/embeddings/wiki_emb_*" \
    --out_file xor_dev_dpr_retrieval_results.json \
    --n-docs 20 --validation_workers 1 --batch_size 256 --add_lang
  1. Convert the retrieved results into mGEN input format
cd mGEN
python3 convert_dpr_retrieval_results_to_seq2seq.py \
    --dev_fp ../mDPR/xor_dev_dpr_retrieval_results.json \
    --output_dir xorqa_dev_final_retriever_results \
    --top_n 15 \
    --add_lang \
    --xor_engspan_train data/xor_train_retrieve_eng_span.jsonl \
    --xor_full_train data/xor_train_full.jsonl \
    --xor_full_dev data/xor_dev_full_v1_1.jsonl
  1. Run mGEN
CUDA_VISIBLE_DEVICES=0 python eval_mgen.py \
    --model_name_or_path \
    --evaluation_set xorqa_dev_final_retriever_results/val.source \
    --gold_data_path xorqa_dev_final_retriever_results/gold_para_qa_data_dev.tsv \
    --predictions_path xor_dev_final_results.txt \
    --gold_data_mode qa \
    --model_type mt5 \
    --max_length 20 \
    --eval_batch_size 4
cd ..
  1. Run the XOR QA full evaluation script
cd eval_scripts
python eval_xor_full.py --data_file ../data/xor_dev_full_v1_1.jsonl --pred_file ../mGEN/xor_dev_final_results.txt --txt_file

Baselines

In our paper, we have tested several baselines such as Translate-test or multilingual baselines. The codes for machine translations or BM 25-based retrievers are at baselines. To run the baselines, you may need to download code and mdoels from the XOR QA repository. Those codes are implemented by Velocity :)

Citations and Contact

If you find this codebase is useful or use in your work, please cite our paper.

@article{
asai2021cora,
title={One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval},
author={Akari Asai and Xinyan Yu and Jungo Kasai and Hannaneh Hajishirzi},
journal={Arxiv Preprint},
year={2021}
}

Please contact Akari Asai (@AkariAsai on Twitter, akari[at]cs.washington.edu) for questions and suggestions.

Owner
Akari Asai
PhD student at @uwnlp . NLP & ML.
Akari Asai
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022