[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Overview

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

paper | website

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, Shaolei Ren, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 3, Dec, 2021. (SIGMETRICS 2022)

@article{
  luOneProxy2021,
  title={One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search},
  author={Bingqian Lu and Jianyi Yang and Weiwen Jiang and Yiyu Shi and Shaolei Ren},
  journal = {Proceedings of the ACM on Measurement and Analysis of Computing Systems}, 
  month = Dec,
  year = 2021,
  volume = {5}, 
  number = {3},
  articleno = {34}, 
  numpages = {35},
}

In a Nutshell

Given N target devices, our OneProxy approach can keep the total neural architecture search cost at O(1).

Hardware-aware NAS Dilemma

CNNs are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices.

Overview of SOTA NAS algorithms

framework

Left: NAS without a supernet. Right: One-shot NAS with a supernet.

nas_cost_comparison

Cost Comparison of Hardware-aware NAS Algorithms for đť‘› Target Devices.

Our approach: exploiting latency monotonicity

We address the scalability challenge by exploiting latency monotonicity — the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality.

Using SRCC to measure latency monotonicity

To quantify the degree of latency monotonicity, we use the metric of Spearman’s Rank Correlation Coefficient (SRCC), which lies between -1 and 1 and assesses statistical dependence between the rankings of two variables using a monotonic function.

heatmap

SRCC of 10k sampled models latencies in MobileNet-V2 space on different pairs of mobile and non-mobile devices.

In the absence of strong latency monotonicity: adapting the proxy latency predictor

AdaProxy for boosting latency monotonicity

We exploit the correlation among devices and propose efficient transfer learning to boost the otherwise possibly weak latency monotonicity for a target device.

In the MobileNet-V2 space, with S5e as default proxy device

nasbench_heatmap

In the NAS-Bench-201 search space on CIFAR-10 (left), CIFAR-100 (middle) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

nasbench_heatmap

In the FBNet search spaces on CIFAR-100 (left) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

SRCC for various devices in the NAS-Bench-201 search space with latencies collected from [19, 29, 49, 50]

Using one proxy device for hardware-aware NAS

flowchart

One proxy for hardware-aware NAS

ea_models

exhaustive_models

Results for non-mobile target devices with the default S5e proxy and AdaProxy. The top row shows the evolutionary search results with real measured accuracies, and the bottom row shows the exhaustive search results based on 10k random architectures (in the MobileNet-V2 space) and predicted accuracies.

rice_nasbench_cifar10

Exhaustive search results for different target devices on NAS-Bench-201 architectures (CIFAR-10 dataset). Pixel3 is the proxy.

Public latency datasets used in this work

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Eagle: Efficient and Agile Performance Estimator and Dataset

nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices

Once for All: Train One Network and Specialize it for Efficient Deployment

Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022