[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Overview

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

paper | website

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, Shaolei Ren, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 3, Dec, 2021. (SIGMETRICS 2022)

@article{
  luOneProxy2021,
  title={One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search},
  author={Bingqian Lu and Jianyi Yang and Weiwen Jiang and Yiyu Shi and Shaolei Ren},
  journal = {Proceedings of the ACM on Measurement and Analysis of Computing Systems}, 
  month = Dec,
  year = 2021,
  volume = {5}, 
  number = {3},
  articleno = {34}, 
  numpages = {35},
}

In a Nutshell

Given N target devices, our OneProxy approach can keep the total neural architecture search cost at O(1).

Hardware-aware NAS Dilemma

CNNs are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices.

Overview of SOTA NAS algorithms

framework

Left: NAS without a supernet. Right: One-shot NAS with a supernet.

nas_cost_comparison

Cost Comparison of Hardware-aware NAS Algorithms for đť‘› Target Devices.

Our approach: exploiting latency monotonicity

We address the scalability challenge by exploiting latency monotonicity — the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality.

Using SRCC to measure latency monotonicity

To quantify the degree of latency monotonicity, we use the metric of Spearman’s Rank Correlation Coefficient (SRCC), which lies between -1 and 1 and assesses statistical dependence between the rankings of two variables using a monotonic function.

heatmap

SRCC of 10k sampled models latencies in MobileNet-V2 space on different pairs of mobile and non-mobile devices.

In the absence of strong latency monotonicity: adapting the proxy latency predictor

AdaProxy for boosting latency monotonicity

We exploit the correlation among devices and propose efficient transfer learning to boost the otherwise possibly weak latency monotonicity for a target device.

In the MobileNet-V2 space, with S5e as default proxy device

nasbench_heatmap

In the NAS-Bench-201 search space on CIFAR-10 (left), CIFAR-100 (middle) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

nasbench_heatmap

In the FBNet search spaces on CIFAR-100 (left) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

SRCC for various devices in the NAS-Bench-201 search space with latencies collected from [19, 29, 49, 50]

Using one proxy device for hardware-aware NAS

flowchart

One proxy for hardware-aware NAS

ea_models

exhaustive_models

Results for non-mobile target devices with the default S5e proxy and AdaProxy. The top row shows the evolutionary search results with real measured accuracies, and the bottom row shows the exhaustive search results based on 10k random architectures (in the MobileNet-V2 space) and predicted accuracies.

rice_nasbench_cifar10

Exhaustive search results for different target devices on NAS-Bench-201 architectures (CIFAR-10 dataset). Pixel3 is the proxy.

Public latency datasets used in this work

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Eagle: Efficient and Agile Performance Estimator and Dataset

nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices

Once for All: Train One Network and Specialize it for Efficient Deployment

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022