Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Overview

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth

This codebase implements the loss function described in:

Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool Conference on Computer Vision and Pattern Recognition (CVPR), june 2019

Our network architecture is a multi-branched version of ERFNet and uses the Lovasz-hinge loss for maximizing the IoU of each instance.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here.

Getting started

This codebase showcases the proposed loss function on car instance segmentation using the Cityscapes dataset.

Prerequisites

Dependencies:

  • Pytorch 1.1
  • Python 3.6.8 (or higher)
  • Cityscapes + scripts (if you want to evaluate the model)

Training

Training consists out of 2 steps. We first train on 512x512 crops around each object, to avoid computation on background patches. Afterwards, we finetune on larger patches (1024x1024) to account for bigger objects and background features which are not present in the smaller crops.

To generate these crops do the following:

$ CITYSCAPES_DIR=/path/to/cityscapes/ python utils/generate_crops.py

Afterwards start training:

$ CITYSCAPES_DIR=/path/to/cityscapes/ python train.py

Different options can be modified in train_config.py, e.g. to visualize set display=True.

Testing

You can download a pretrained model here. Save this file in the src/pretrained_models/ or adapt the test_config.py file.

To test the model on the Cityscapes validation set run:

$ CITYSCAPES_DIR=/path/to/cityscapes/ python test.py

The pretrained model gets 56.4 AP on the car validation set.

Acknowledgement

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven)

Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBoxδΈ­ζ–‡ζ–‡ζ‘£ OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 πŸ“‚ Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
πŸ’‘ Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023