Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Related tags

Deep Learningpiccolo
Overview

PICCOLO: Point-Cloud Centric Omnidirectional Localization

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021) [Paper] [Video].


PICCOLO is a simple, efficient algorithm for omnidirectional localization that estimates camera pose given a set of input query omnidirectional image and point cloud: no additional preprocessing/learning is required!


In this repository, we provide the implementation and instructions for running PICCOLO, along with the accompanying OmniScenes dataset. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Running PICCOLO

Dataset Preparation

First, download the Stanford2D-3D-S Dataset, and place the data in the directory structure below.

piccolo/data
└── stanford (Stanford2D-3D-S Dataset)
    ├── pano (panorama images)
    │   ├── area_1
    │   │  └── *.png
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.png
    ├── pcd_not_aligned (point cloud data)
    │   ├── area_1
    │   │   └── *.txt
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.txt
    └── pose (json files containing ground truth camera pose)
        ├── area_1
        │   └── *.json
        ⋮
        │
        └── area_6
            └── *.json

Installation

To run the codebase, you need Anaconda. Once you have Anaconda installed, run the following command to create a conda environment.

conda create --name omniloc python=3.7
conda activate omniloc
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html 
conda install cudatoolkit=10.1

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.0 and CUDA 10.1.

Running

To obtain results for the Stanford-2D-3D-S dataset, run the following command from the terminal:

python main.py --config configs/stanford.ini --log logs/NAME_OF_LOG_DIRECTORY

The config above performs gradient descent sequentially for each candidate starting point. We also provide a parallel implementation of PICCOLO, which performs gradient descent in parallel. While this version faster, it shows slightly inferior performance compared to the sequential optimization version. To run the parallel implementation, run the following command:

python main.py --config configs/stanford_parallel.ini --log logs/NAME_OF_LOG_DIRECTORY

Output

After running, four files will be in the log directory.

  • Config file used for PICCOLO
  • Images, made by projecting point cloud using the result obtained from PICCOLO, in NAME_OF_LOG_DIRECTORY/results
  • Csv file which contains the information
    • Panorama image name
    • Ground truth translation
    • Ground truth rotation
    • Whether the image was skipped (skipped when the ground truth translation is out of point cloud bound)
    • Translation obtained by running PICCOLO
    • Rotation obtained by running PICCOLO
    • Translation error
    • Rotation error
    • Time
  • Tensorboard file containing the accuracy

Downloading OmniScenes

OmniScenes is our newly collected dataset for evaluating omnidirectional localization in diverse scenearios such as robot-mounted/handheld cameras and scenes with changes.


The dataset is comprised of images and point clouds captured from 7 scenes ranging from wedding halls to hotel rooms. We are currently in the process of removing regions in the dataset that contains private information difficult to be released in public. We will notify further updates through this GitHub repository.

Owner
Noob grad student
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022