Neural Surface Maps

Overview

Neural Surface Maps

Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra

[Paper] [Project Page]

How-To

Replicating the results is possible following these steps:

  1. Parametrize the surface
  2. Prepare surface sample
  3. Overfit the surface
  4. Neural parametrization of the surface
  5. Optimize surface-to-surface map
  6. Optimize a map between a collection

1. Surface Parametrization

This is a preprocessing step. You can use SLIM[1] from this repo to fulfill this step.

2. Sample preparation

Given a parametrized surface (prev. step), we need to convert it into a sample. First of all, we need to over sample the surface with Meshlab. You can use the midpoint subdivision filter.

Once the super-sampled surface is ready then you can convert it into a sample:

python -m preprocessing.convert_sample surface_slim.obj surface_slim_oversampled.obj output_sample.pth

The file output_sample.pth is the sample ready to be over-fitted.

3. Overfit surface

A surface representation is generated with:

python -m training_surface_map dataset.sample_path=output_sample.pth

This will save a surface map inside outputs/neural_maps folder. The folder name follows this patterns: overfit_[timestamp]. Inside that folder, the map is saved under the sample fodler as pth file.

The overfitted surface can be generated with:

python -m show_surface_map

please, set the path to the pth file just created inside the script.

4. Neural parametrization

Generating a neural parametrization need to run:

python -m training_parametrization_map dataset.sample_path=your_surface_map.pth

Like for the overfitting, this saves the map inside outputs/neural_maps folder. The folder name have the following patterns parametrization_[timestamp].

To display the paramtrization obtained run:

python -m show_parametrization_map

please, set the path to the pth file just created inside the script.

5. Optimize surface-to-surface map

To generating a inter-surface map run:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_a.pth dataset.sample_path_f=your_surface_map_b.pth

Note, this steps requires two surface maps. A source, sample_path_g, and a target, sample_path_f.

Likewise the overfitting, the map is saved inside outputs/neural_maps. The inter-surface map folder pattern is intersurface_[timestamp]. The pth file is inside the models folder.

To display the inter-surface map run:

python -m show_intersurface_map

remember to set the path of the maps inside the script.

6. Optimize collection map

A collection between a set of surface maps can be optimized with:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_g.pth dataset.sample_path_f=your_surface_map_f.pth dataset.sample_path_q=your_surface_map_q.pth

Note, this steps requires three surface maps. A source, sample_path_g, and two targets, sample_path_f and sample_path_q.

This will save two maps inside outputs/neural_maps folder. The folder name follows this patterns: collection_[timestamp], under the folder models you can find two *.pth file.

To display the collection map run:

python -m show_collection_map

remember to set the path of maps inside the script.


Dependencies

Dependencies are listed in environment.yml. Using conda, all the packages can be installed with conda env create -f environment.yml.

On top of the packages above, please install also pytorch svd on gpu package.


Data

Any mesh can be used for this process. A data example can be downloaded here.


Citation

@misc{morreale2021neural,
      title={Neural Surface Maps},
      author={Luca Morreale and Noam Aigerman and Vladimir Kim and Niloy J. Mitra},
      year={2021},
      eprint={2103.16942},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

References

[1] Scalable locally injective mappings - Michael Rabinovich et. al. - ACM Transactions on Graphics (TOG) 2017

Owner
Luca Morreale
Luca Morreale
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022