Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

Overview

ResDAVEnet-VQ

Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech

What is in this repo?

  • Multi-GPU training of ResDAVEnet-VQ
  • Quantitative evaluation
    • Image-to-speech and speech-to-image retrieval
    • ZeroSpeech 2019 ABX phone-discriminability test
    • Word detection
  • Qualitative evaluation
    • Visualize time-aligned word/phone/code transcripts
    • F1/recall/precision scatter plots for model/layer comparison

alt text

If you find the code useful, please cite

@inproceedings{Harwath2020Learning,
  title={Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech},
  author={David Harwath and Wei-Ning Hsu and James Glass},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=B1elCp4KwH}
}

Pre-trained models

Model [email protected] Link MD5 sum
{} 0.735 gDrive e3f94990c72ce9742c252b2e04f134e4
{}->{2} 0.760 gDrive d8ebaabaf882632f49f6aea0a69516eb
{}->{3} 0.794 gDrive 2c3a269c70005cbbaaa15fc545da93fa
{}->{2,3} 0.787 gDrive d0764d8e97187c8201f205e32b5f7fee
{2} 0.753 gDrive d68c942069fcdfc3944e556f6af79c60
{2}->{2,3} 0.764 gDrive 09e704f8fcd9f85be8c4d5bdf779bd3b
{2}->{2,3}->{2,3,4} 0.793 gDrive 6e403e7f771aad0c95f087318bf8447e
{3} 0.734 gDrive a0a3d5adbbd069a2739219346c8a8f70
{3}->{2,3} 0.760 gDrive 6c92bcc4445895876a7840bc6e88892b
{2,3} 0.667 gDrive 7a98a661302939817a1450d033bc2fcc

Data preparation

Download the MIT Places Image/Audio Data

We use MIT Places scene recognition database (Places Image) and a paired MIT Places Audio Caption Corpus (Places Audio) as visually-grounded speech, which contains roughly 400K image/spoken caption pairs, to train ResDAVEnet-VQ.

  • Places Image can be downloaded here
  • Places Audio can be downloaded here

Optional data preprocessing

Data specifcation files can be found at metadata/{train,val}.json inside the Places Audio directory; however, they do not include the time-aligned word transcripts for analysis. Those with alignments can be downloaded here:

Open the *.json files and update the values of image_base_path and audio_base_path to reflect the path where the image and the audio datasets are stored.

To speed up data loading, we save images and audio data into the HDF5 binary files, and use the h5py Python interface to access the data. The corresponding PyTorch Dataset class is ImageCaptionDatasetHDF5 in ./dataloaders/image_caption_dataset_hdf5.py. To prepare HDF5 datasets, run

./scripts/preprocess.sh

(We do support on-the-fly feature processing with the ImageCaptionDataset class in ./dataloaders/image_caption_dataset.py, which takes a data specification file as input (e.g., metadata/train.json). However, this can be very slow)

ImageCaptionDataset and ImageCaptionDatasetHDF5 are interchangeable, but most scripts in this repo assume the preprocessed HDF5 dataset is available. Users would have to modify the code correspondingly to use ImageCaptionDataset.

Interactive Qualtitative Evaluation

See run_evaluations.ipynb

Quantitative Evaluation

ZeroSpeech 2019 ABX Phone Discriminability Test

Users need to download the dataset and the Docker image by following the instructions here.

To extract ResDAVEnet-VQ features, see ./scripts/dump_zs19_abx.sh.

Word detection

See ./run_unit_analysis.py. It needs both HDF5 dataset and the original JSON dataset to get the time-aligned word transcripts.

Example:

python run_unit_analysis.py --hdf5_path=$hdf5_path --json_path=$json_path \
  --exp_dir=$exp_dir --layer=$layer --output_dir=$out_dir

Cross-modal retrieval

See ./run_ResDavenetVQ.py. Set --mode=eval for retrieval evaluation.

Example:

python run_ResDavenetVQ.py --resume=True --mode=eval \
  --data-train=$data_tr --data-val=$data_dt \
  --exp-dir="./exps/pretrained/RDVQ_01000_01100_01110"

Training

See ./scripts/train.sh.

To train a model from scratch with the 2nd and 3rd layers quantized, run

./scripts/train.sh 01100 RDVQ_01100 ""

To train a model with the 2nd and 3rd layers quantized, and initialize weights from a pre-trained model (e.g., ./exps/RDVQ_00000), run

./scripts/train.sh 01100 RDVQ_01100 "--seed-dir ./exps/RDVQ_00000"
Owner
Wei-Ning Hsu
Research Scientist @ Facebook AI Research (FAIR). Former PhD Student @ MIT Spoken Language Systems Group
Wei-Ning Hsu
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022