Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

Overview

ResDAVEnet-VQ

Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech

What is in this repo?

  • Multi-GPU training of ResDAVEnet-VQ
  • Quantitative evaluation
    • Image-to-speech and speech-to-image retrieval
    • ZeroSpeech 2019 ABX phone-discriminability test
    • Word detection
  • Qualitative evaluation
    • Visualize time-aligned word/phone/code transcripts
    • F1/recall/precision scatter plots for model/layer comparison

alt text

If you find the code useful, please cite

@inproceedings{Harwath2020Learning,
  title={Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech},
  author={David Harwath and Wei-Ning Hsu and James Glass},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=B1elCp4KwH}
}

Pre-trained models

Model [email protected] Link MD5 sum
{} 0.735 gDrive e3f94990c72ce9742c252b2e04f134e4
{}->{2} 0.760 gDrive d8ebaabaf882632f49f6aea0a69516eb
{}->{3} 0.794 gDrive 2c3a269c70005cbbaaa15fc545da93fa
{}->{2,3} 0.787 gDrive d0764d8e97187c8201f205e32b5f7fee
{2} 0.753 gDrive d68c942069fcdfc3944e556f6af79c60
{2}->{2,3} 0.764 gDrive 09e704f8fcd9f85be8c4d5bdf779bd3b
{2}->{2,3}->{2,3,4} 0.793 gDrive 6e403e7f771aad0c95f087318bf8447e
{3} 0.734 gDrive a0a3d5adbbd069a2739219346c8a8f70
{3}->{2,3} 0.760 gDrive 6c92bcc4445895876a7840bc6e88892b
{2,3} 0.667 gDrive 7a98a661302939817a1450d033bc2fcc

Data preparation

Download the MIT Places Image/Audio Data

We use MIT Places scene recognition database (Places Image) and a paired MIT Places Audio Caption Corpus (Places Audio) as visually-grounded speech, which contains roughly 400K image/spoken caption pairs, to train ResDAVEnet-VQ.

  • Places Image can be downloaded here
  • Places Audio can be downloaded here

Optional data preprocessing

Data specifcation files can be found at metadata/{train,val}.json inside the Places Audio directory; however, they do not include the time-aligned word transcripts for analysis. Those with alignments can be downloaded here:

Open the *.json files and update the values of image_base_path and audio_base_path to reflect the path where the image and the audio datasets are stored.

To speed up data loading, we save images and audio data into the HDF5 binary files, and use the h5py Python interface to access the data. The corresponding PyTorch Dataset class is ImageCaptionDatasetHDF5 in ./dataloaders/image_caption_dataset_hdf5.py. To prepare HDF5 datasets, run

./scripts/preprocess.sh

(We do support on-the-fly feature processing with the ImageCaptionDataset class in ./dataloaders/image_caption_dataset.py, which takes a data specification file as input (e.g., metadata/train.json). However, this can be very slow)

ImageCaptionDataset and ImageCaptionDatasetHDF5 are interchangeable, but most scripts in this repo assume the preprocessed HDF5 dataset is available. Users would have to modify the code correspondingly to use ImageCaptionDataset.

Interactive Qualtitative Evaluation

See run_evaluations.ipynb

Quantitative Evaluation

ZeroSpeech 2019 ABX Phone Discriminability Test

Users need to download the dataset and the Docker image by following the instructions here.

To extract ResDAVEnet-VQ features, see ./scripts/dump_zs19_abx.sh.

Word detection

See ./run_unit_analysis.py. It needs both HDF5 dataset and the original JSON dataset to get the time-aligned word transcripts.

Example:

python run_unit_analysis.py --hdf5_path=$hdf5_path --json_path=$json_path \
  --exp_dir=$exp_dir --layer=$layer --output_dir=$out_dir

Cross-modal retrieval

See ./run_ResDavenetVQ.py. Set --mode=eval for retrieval evaluation.

Example:

python run_ResDavenetVQ.py --resume=True --mode=eval \
  --data-train=$data_tr --data-val=$data_dt \
  --exp-dir="./exps/pretrained/RDVQ_01000_01100_01110"

Training

See ./scripts/train.sh.

To train a model from scratch with the 2nd and 3rd layers quantized, run

./scripts/train.sh 01100 RDVQ_01100 ""

To train a model with the 2nd and 3rd layers quantized, and initialize weights from a pre-trained model (e.g., ./exps/RDVQ_00000), run

./scripts/train.sh 01100 RDVQ_01100 "--seed-dir ./exps/RDVQ_00000"
Owner
Wei-Ning Hsu
Research Scientist @ Facebook AI Research (FAIR). Former PhD Student @ MIT Spoken Language Systems Group
Wei-Ning Hsu
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022