Pytorch implementation of few-shot semantic image synthesis

Overview

Few-shot Semantic Image Synthesis Using StyleGAN Prior


Our method can synthesize photorealistic images from dense or sparse semantic annotations using a few training pairs and a pre-trained StyleGAN.

Prerequisites

  1. Python3
  2. PyTorch

Preparation

Download and decompress the file containing StyleGAN pre-trained models and put the "pretrained_models" directory in the parent directory.

Inference with our pre-trained models

  1. Download and decompress the file containing our pretrained encoders and put the "results" directory in the parent directory.
  2. For example, our results for celebaMaskHQ in a one-shot setting can be generated as follows:
python scripts/inference.py --exp_dir=results/celebaMaskHQ_oneshot --checkpoint_path=results/celebaMaskHQ_oneshot/checkpoints/iteration_100000.pt --data_path=./data/CelebAMask-HQ/test/labels/ --couple_outputs --latent_mask=8,9,10,11,12,13,14,15,16,17

Inference results are generated in results/celebaMaskHQ_oneshot. If you use other datasets, please specify --exp_dir, --checkpoint_path, and --data_path appropriately.

Training

For each dataset, you can train an encoder as follows:

  • CelebAMask
python scripts/train.py --exp_dir=[result_dir] --dataset_type=celebs_seg_to_face --stylegan_weights pretrained_models/stylegan2-ffhq-config-f.pt --start_from_latent_avg --label_nc 19 --input_nc 19
  • CelebALandmark
python scripts/train.py --exp_dir=[result_dir] --dataset_type=celebs_landmark_to_face --stylegan_weights pretrained_models/stylegan2-ffhq-config-f.pt --start_from_latent_avg --label_nc 71 --input_nc 71 --sparse_labeling


Intermediate training outputs with the StyleGAN pre-trained with the CelebA-HQ dataset. It can be seen that the layouts of the bottom-row images reconstructed from the middle-row pseudo semantic masks gradually become close to those of the top-row StyleGAN samples as the training iterations increase.

  • LSUN church
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsunchurch_seg_to_img --stylegan_weights pretrained_models/stylegan2-church-config-f.pt --style_num 14 --start_from_latent_avg --label_nc 151 --input_nc 151
  • LSUN car
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsuncar_seg_to_img --stylegan_weights pretrained_models/stylegan2-car-config-f.pt --style_num 16 --start_from_latent_avg --label_nc 5 --input_nc 5
  • LSUN cat
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsuncat_scribble_to_img --stylegan_weights pretrained_models/stylegan2-cat-config-f.pt --style_num 14 --start_from_latent_avg --label_nc 9 --input_nc 9 --sparse_labeling
  • Ukiyo-e
python scripts/train.py --exp_dir=[result_dir] --dataset_type=ukiyo-e_scribble_to_img --stylegan_weights pretrained_models/ukiyoe-256-slim-diffAug-002789.pt --style_num 14 --channel_multiplier 1 --start_from_latent_avg --label_nc 8 --input_nc 8 --sparse_labeling
  • Anime
python scripts/train.py --exp_dir=[result_dir] --dataset_type=anime_cross_to_img --stylegan_weights pretrained_models/2020-01-11-skylion-stylegan2-animeportraits-networksnapshot-024664.pt --style_num 16 --start_from_latent_avg --label_nc 2 --input_nc 2 --sparse_labeling

Using StyleGAN samples as few-shot training data

  1. Run the following script:
python scripts/generate_stylegan_samples.py --exp_dir=[result_dir] --stylegan_weights ./pretrained_models/stylegan2-ffhq-config-f.pt --style_num 18 --channel_multiplier 2

Then a StyleGAN image (*.png) and a corresponding latent code (*.pt) are obtained in [result_dir]/data/images and [result_dir]/checkpoints.

  1. Manually annotate the generated image in [result_dir]/data/images and save the annotated mask in [result_dir]/data/labels.

  2. Edit ./config/data_configs.py and ./config/paths_config.py appropriately to use the annotated pairs as a training set.

  3. Run a training command above with appropriate options.

Citation

Please cite our paper if you find the code useful:

@article{endo2021fewshotsmis,
  title = {Few-shot Semantic Image Synthesis Using StyleGAN Prior},
  author = {Yuki Endo and Yoshihiro Kanamori},
  journal   = {CoRR},
  volume    = {abs/2103.14877},
  year      = {2021}
}

Acknowledgements

This code heavily borrows from the pixel2style2pixel repository.

Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022