The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Related tags

Deep LearningRBN
Overview

Representative Batch Normalization (RBN) with Feature Calibration

The official implementation of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

You only need to replace the BN with our RBN without any other adjustment.

Update

  • 2021.4.9 The Jittor implementation is available now in Jittor.
  • 2021.4.1 The training code of ImageNet classification using RBN is released.

Introduction

Batch Normalization (BatchNorm) has become the default component in modern neural networks to stabilize training. In BatchNorm, centering and scaling operations, along with mean and variance statistics, are utilized for feature standardization over the batch dimension. The batch dependency of BatchNorm enables stable training and better representation of the network, while inevitably ignores the representation differences among instances. We propose to add a simple yet effective feature calibration scheme into the centering and scaling operations of BatchNorm, enhancing the instance-specific representations with the negligible computational cost. The centering calibration strengthens informative features and reduces noisy features. The scaling calibration restricts the feature intensity to form a more stable feature distribution. Our proposed variant of BatchNorm, namely Representative BatchNorm, can be plugged into existing methods to boost the performance of various tasks such as classification, detection, and segmentation.

Applications

ImageNet classification

The training code of ImageNet classification is released in ImageNet_training folder.

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{gao2021rbn,
  title={Representative Batch Normalization with Feature Calibration},
  author={Gao, Shang-Hua and Han, Qi and Li, Duo and Peng, Pai and Cheng, Ming-Ming and Pai Peng},
  booktitle=CVPR,
  year={2021}
}

Contact

If you have any questions, feel free to E-mail Shang-Hua Gao (shgao(at)live.com) and Qi Han(hqer(at)foxmail.com).

You might also like...
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

[CVPR 2022] Official code for the paper:
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

 Code for CVPR2021 paper
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

Comments
  • 关于scaling Calibration的可学习参数b初始化问题

    关于scaling Calibration的可学习参数b初始化问题

    您好,我有个问题想问下,关于scaling calibration中,您对偏置b的参数初始化为1,这是有什么根据吗

    self.scale_weight.data.fill_(0)
    self.scale_bias.data.fill_(1)
    

    因为根据你的公式 image 在限制函数中(沿用你代码的sigmoid函数),你先让可学习参数w初始化为0,那么整个限制函数中一开始就是

    R(wb)
    

    而wb一开始为1的时候,对应sigmoid的值约为0.731,把他提到方差外部,则方差变为原始方差的0.73*0.73 = 0.5329,相当于方差减半了。若一开始训练就做这么剧烈的变化,是不是对后续训练有一定影响?

    我能理解权重w初始化为0,可以根据centering calibration那一节有

    When the absolute value of wm is close to zero, the centering operation still relies on the running statistics.

    针对这两个可学习参数的初始值设定,有进行过相关实验探讨吗

    opened by MARD1NO 2
  • 使用fuse函数会报错

    使用fuse函数会报错

    def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True)

        # prepare filters
        w_conv = conv.weight.clone().view(conv.out_channels, -1)
        w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
        fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
    
        # prepare spatial bias
        if conv.bias is not None:
            b_conv = conv.bias
        else:
            b_conv = torch.zeros(conv.weight.size(0))
        b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
        fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
    
        return fusedconv
    

    Fusing layers... Traceback (most recent call last): File "test.py", line 263, in opt.augment) File "test.py", line 45, in test model.fuse() File "/home/zzf/Desktop/yolov3-dbb+representbatchnorm/models.py", line 402, in fuse fused = torch_utils.fuse_conv_and_bn(conv, b) File "/home/zzf/Desktop/yolov3-dbb+representbatchnorm/utils/torch_utils.py", line 83, in fuse_conv_and_bn w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) RuntimeError: matrix or a vector expected

    把自己网络的batchnorm 改变后会报错麻烦解决以下。

    opened by xiaowanzizz 1
  • 论文中的一些疑惑

    论文中的一些疑惑

    您好,感谢您的工作!论文里的一些地方我没有明白,希望您能解答一下,谢谢。 ① image When the Km in Eqn.(5) is set to Uc,the running mean of Km is equal to E(X) 请问这句话应该怎么理解呢? ②在Choice of Instance Statistics中,你提到的the mean and standard division over spatial dimensions, denoted by image 请问这两个值具体怎么计算? ③ ”Since scaling calibration only restricts the feature intensity while not changing the amount of information, scaling with both channel and spatial statistics results in a similar performance.”,请问改变信息的数量是什么意思呢?

    opened by songyonger 1
Releases(pretrained)
Owner
Open source projects of ShangHua-Gao
Open source projects of ShangHua-Gao
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022