[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

Overview

MDCA Calibration

This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration".

Abstract

Deep Neural Networks (DNNs) make overconfident mistakes which can prove to be probematic in deployment in safety critical applications. Calibration is aimed to enhance trust in DNNs. The goal of our proposed Multi-Class Difference in Confidence and Accuracy (MDCA) loss is to align the probability estimates in accordance with accuracy thereby enhancing the trust in DNN decisions. MDCA can be used in case of image classification, image segmentation, and natural language classification tasks.

Teaser

Above image shows comparison of classwise reliability diagrams of Cross-Entropy vs. our proposed method.

Requirements

  • Python 3.8
  • PyTorch 1.8

Directly install using pip

 pip install -r requirements.txt

Training scripts:

Refer to the scripts folder to train for every model and dataset. Overall the command to train looks like below where each argument can be changed accordingly on how to train. Also refer to dataset/__init__.py and models/__init__.py for correct arguments to train with. Argument parser can be found in utils/argparser.py.

Train with cross-entropy:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss cross_entropy 

Train with FL+MDCA: Also mention the gamma (for Focal Loss) and beta (Weight assigned to MDCA) to train FL+MDCA with

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss FL+MDCA --gamma 1.0 --beta 1.0 

Train with NLL+MDCA:

python train.py --dataset cifar10 --model resnet56 --schedule-steps 80 120 --epochs 160 --loss NLL+MDCA --beta 1.0

Post Hoc Calibration:

To do post-hoc calibration, we can use the following command.

lr and patience value is used for Dirichlet calibration. To change range of grid-search in dirichlet calibration, refer to posthoc_calibrate.py.

python posthoc_calibrate.py --dataset cifar10 --model resnet56 --lr 0.001 --patience 5 --checkpoint path/to/your/trained/model

Other Experiments (Dataset Drift, Dataset Imbalance):

experiments folder contains our experiments on PACS, Rotated MNIST and Imbalanced CIFAR10. Please refer to the scripts provided to run them.

Citation

If you find our work useful in your research, please cite the following:

@InProceedings{StitchInTime,
    author    = {R. Hebbalaguppe, J. Prakash, N. Madan, C. Arora},
    title     = {A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022}
}

Contact

For questions about our paper or code, please contact any of the authors (@neelabh17, @bicycleman15, @rhebbalaguppe ) or raise an issue on GitHub.

References:

The code is adapted from the following repositories:

[1] bearpaw/pytorch-classification [2] torrvision/focal_calibration [3] Jonathan-Pearce/calibration_library

Owner
MDCA Calibration
MDCA Calibration
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022