(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

Overview

NeRF--: Neural Radiance Fields Without Known Camera Parameters

Project Page | Arxiv | Colab Notebook | Data

Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min Chen³, Victor Adrian Prisacariu¹.

¹Active Vision Lab + ²Visual Geometry Group + ³e-Research Centre, University of Oxford.

Overview

We provide 3 training targets in this repository, under the tasks directory:

  1. task/nerfmm/train.py: This is our main training script for the NeRF-LLFF dataset, which estimates camera poses, focal lenghts and a NeRF jointly and monitors the absolute trajectory error (ATE) between our estimation of camera parameters and COLMAP estimation during training. This target can also start training from a COLMAP initialisation and refine the COLMAP camera parameters.
  2. task/refine_nerfmm/train.py: This is the training script that refines a pretrained nerfmm system.
  3. task/any_folder/train.py: This is a training script that takes a folder that contains forward-facing images and trains with our nerfmm system without making any comparison with COLMAP. It is similar to what we offer in our CoLab notebook and we treat this any_folder target as a playgraound, where users can try novel view synthesis by just providing an image folder and do not care how the camera parameter estimation compares with COLMAP.

For each target, we provide relevant utilities to evaluate our system. Specifically,

  • for the nerfmm target, we provide three utility files:
    • eval.py to evaluate image rendering quality on validation splits with PSNR, SSIM and LPIPS, i.e, results in Table 1.
    • spiral.py to render novel views using a spiral camera trajectory, i.e. results in Figure 1.
    • vis_learned_poses.py to visualise our camera parameter estimation with COLMAP estimation in 3D. It also computes ATE between them, i.e. E1 in Table 2.
  • for the refine_nerfmm target, all utilities in nerfmm target above are compatible with refine_nerfmm target, since it just refines a pretrained nerfmm system.
  • for the any_folder target, it has its own spiral.py and vis_learned_poses.py utilities, as it does not compare with COLMAP. It does not have a eval.py file as this target is treated as a playground and does not split images to train/validation sets. It only provides novel view synthesis results via the spiral.py file.

Table of Content

Environment

We provide a requirement.yml file to set up a conda environment:

git clone https://github.com/ActiveVisionLab/nerfmm.git
cd nerfmm
conda env create -f environment.yml

Generally, our code should be able to run with any pytorch >= 1.1 .

(Optional) Install open3d for visualisation. You might need a physical monitor to install this lib.

pip install open3d

Get Data

We use the NeRF-LLFF dataset with two small structural changes:

  1. We remove their image_4 and image_8 folder and downsample images to any desirable resolution during data loading dataloader/with_colmap.py, by calling PyTorch's interpolate function.
  2. We explicitly generate two txt files for train/val image ids. i.e. take every 8th image as the validation set, as in the official NeRF train/val split. The only difference is that we store them as txt files while NeRF split them during data loading. The file produces these two txt files is utils/split_dataset.py.

In addition to the NeRF-LLFF dataset, we provide two demo scenes to demonstrate how to use the any_folder target.

We pack the re-structured LLFF data and our data to a tar ball (~1.8G), to get it, run:

wget https://www.robots.ox.ac.uk/~ryan/nerfmm2021/nerfmm_release_data.tar.gz

Untar the data:

tar -xzvf path/to/the/tar.gz

Training

We show how to:

  1. train a nerfmm from scratch, i.e. initialise camera poses with identity matrices and focal lengths with image resolution:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern'
  2. train a nerfmm from COLMAP initialisation:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' \
    --start_refine_pose_epoch=1000 \
    --start_refine_focal_epoch=1000
    This command initialises a nerfmm target with COLMAP parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  3. train a nerfmm from a pretrained nerfmm:
    python tasks/refine_nerfmm/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' --start_refine_epoch=1000 \
    --ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'
    This command initialises a refine_nerfmm target with a set of pretrained nerfmm parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  4. train an any_folder from scratch given an image folder:
    python tasks/any_folder/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='any_folder_demo/desk'
    This command trains an any_folder target using a provided demo scene desk.

(Optional) set a symlink to the downloaded data:

mkdir data_dir  # do it in this nerfmm repo
cd data_dir
ln -s /path/to/downloaded/data ./nerfmm_release_data
cd ..

this can simplify the above training commands, for example:

python tasks/nerfmm/train.py

Evaluation

Compute image quality metrics

Call eval.py in nerfmm target:

python tasks/nerfmm/eval.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

This file can be used to evaluate a checkpoint trained with refine_nerfmm target. For some scenes, you might need to tweak with --opt_eval_lr option to get the best results. Common values for opt_eval_lr are 0.01 / 0.005 / 0.001 / 0.0005 / 0.0001. The default value is 0.001. Overall, it finds validation poses that can produce highest PSNR on validation set while freezing NeRF and focal lengths. We do this because the learned camera pose space is different from the COLMAP estimated camera pose space.

Render novel views

Call spiral.py in each target. The spiral.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Visualise estimated poses in 3D

Call vis_learned_poses.py in each target. The vis_learned_poses.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Acknowledgement

Shangzhe Wu is supported by Facebook Research. Weidi Xie is supported by Visual AI (EP/T028572/1).

The authors would like to thank Tim Yuqing Tang for insightful discussions and proofreading.

During our NeRF implementation, we referenced several open sourced NeRF implementations, and we thank their contributions. Specifically, we referenced functions from nerf and nerf-pytorch, and borrowed/modified code from nerfplusplus and nerf_pl. We especially appreciate the detailed code comments and git issue answers in nerf_pl.

Citation

@article{wang2021nerfmm,
  title={Ne{RF}$--$: Neural Radiance Fields Without Known Camera Parameters},
  author={Zirui Wang and Shangzhe Wu and Weidi Xie and Min Chen and Victor Adrian Prisacariu},
  journal={arXiv preprint arXiv:2102.07064},
  year={2021}
}
Owner
Active Vision Laboratory
Active Vision Laboratory
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022