Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

Related tags

Deep Learningbpr
Overview

BPR

Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash technique into Dense Passage Retriever (DPR) to represent the passage embeddings using compact binary codes rather than continuous vectors. It substantially reduces the memory size without a loss of accuracy tested on Natural Questions and TriviaQA datasets.

BPR was originally developed to improve the computational efficiency of the Sōseki question answering system submitted to the Systems under 6GB track in the NeurIPS 2020 EfficientQA competition. Please refer to our ACL 2021 paper for further technical details.

Installation

BPR can be installed using Poetry:

poetry install

The virtual environment automatically created by Poetry can be activated by poetry shell.

Alternatively, you can install required libraries using pip:

pip install -r requirements.txt

Trained Models

(coming soon)

Reproducing Experiments

Before you start, you need to download the datasets available on the DPR website into <DPR_DATASET_DIR>.

The experimental results on the Natural Questions dataset can be reproduced by running the commands provided in this section. We used a server with 8 NVIDIA Tesla V100 GPUs with 16GB memory in the experiments. The results on the TriviaQA dataset can be reproduced by changing the file names of the input dataset to the corresponding ones (e.g., nq-train.json -> trivia-train.json).

1. Building passage database

python build_passage_db.py \
    --passage_file=<DPR_DATASET_DIR>/wikipedia_split/psgs_w100.tsv \
    --output_file=<PASSAGE_DB_FILE>

2. Training BPR

python train_biencoder.py \
   --gpus=8 \
   --distributed_backend=ddp \
   --train_file=<DPR_DATASET_DIR>/retriever/nq-train.json \
   --eval_file=<DPR_DATASET_DIR>/retriever/nq-dev.json \
   --gradient_clip_val=2.0 \
   --max_epochs=40 \
   --binary

3. Building passage embeddings

python generate_embeddings.py \
   --biencoder_file=<BPR_CHECKPOINT_FILE> \
   --output_file=<EMBEDDING_FILE> \
   --passage_db_file=<PASSAGE_DB_FILE> \
   --batch_size=4096 \
   --parallel

4. Evaluating BPR

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-test.csv \
    --parallel

5. Creating dataset for reader

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-train.csv \
    --output_file=<READER_TRAIN_FILE> \
    --top_k=200 \
    --parallel

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-dev.csv \
    --output_file=<READER_DEV_FILE> \
    --top_k=200 \
    --parallel

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file==<DPR_DATASET_DIR>/retriever/qas/nq-test.csv \
    --output_file=<READER_TEST_FILE> \
    --top_k=200 \
    --parallel

6. Training reader

python train_reader.py \
   --gpus=8 \
   --distributed_backend=ddp \
   --train_file=<READER_TRAIN_FILE> \
   --validation_file=<READER_DEV_FILE> \
   --test_file=<READER_TEST_FILE> \
   --learning_rate=2e-5 \
   --max_epochs=20 \
   --accumulate_grad_batches=4 \
   --nq_gold_train_file=<DPR_DATASET_DIR>/gold_passages_info/nq_train.json \
   --nq_gold_validation_file=<DPR_DATASET_DIR>/gold_passages_info/nq_dev.json \
   --nq_gold_test_file=<DPR_DATASET_DIR>/gold_passages_info/nq_test.json \
   --train_batch_size=1 \
   --eval_batch_size=2 \
   --gradient_clip_val=2.0

7. Evaluating reader

python evaluate_reader.py \
    --gpus=8 \
    --distributed_backend=ddp \
    --checkpoint_file=<READER_CHECKPOINT_FILE> \
    --eval_batch_size=1

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this work useful, please cite the following paper:

@inproceedings{yamada2021bpr,
  title={Efficient Passage Retrieval with Hashing for Open-domain Question Answering},
  author={Ikuya Yamada and Akari Asai and Hannaneh Hajishirzi},
  booktitle={ACL},
  year={2021}
}
Owner
Studio Ousia
Studio Ousia
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022