Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

Overview

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin is a treatment effect estimation method tailored for observational studies with longitudinal data. Specifically, it applies to the LIP setting: Longitudinal, Irregular and Point treatment. In these studies, the covariates are observed at irregular intervals leading to treatment allocation; the outcomes are measured longitudinally before and after the treatment; the treatment is assigned at a specific time point and stays unchanged during the study.

The key insight of SyncTwin is to fully leverage the pre-treatment outcomes. It uses the temporal structure in the outcome time series to improve the accuracy of counterfactual prediction. It further uses the pre-treatment outcomes to control the estimation error on the individual level. Finally, the method enables interpretability by example: the user can examine the key contributing examples that leads to the estimate.

Installation

To run the code locally, make sure to first install the required python packages specified in requirements.txt. Python 3.7 is recommended for best compatibility. Note that tensorflow and GPy are only needed for running the benchmarks. The directory clairvoyance contains a streamlined version of the clairvoyance library. It is used to run the benchmarks CRN and RMSN.

For some benchmarks (SC, MC-NNM, 1NN), we use their public implementations in the R language. To run these benchmarks, please install R and the dependencies listed in requirements_R.txt.

For coda users, an environment YAML file environment.yml is provided, which includes both Python and R dependencies.

Usage

Scripts for reproducing paper experiments are provided under the directory experiments/.

The reproduce_all.sh shell script contains commands to reproduce all tables and figures in the paper. The Fig[x].sh or Tab[x].sh shell script contain commands to generate results for individual figures or tables. The Fig[x].ipynb notebooks contain commands to create the visualizations. The results will be written in the results folder. For instance, Tab2_C1_MAE.txt corresponds to the first Column of Table 2.

An implementation of SyncTwin is provided in the file SyncTwin.py. Note that SyncTwin is a general framework agnostic to the exact architectural choice of encoder and decoder. In this implementation, we use attentive GRU-D encoder and time-LSTM decoder. In the simulations, SyncTwin is trained in pkpd_sim3_model_training.py.

Citation

If you find the software useful, please consider citing the following paper:

@inproceedings{synctwin2021,
  title={SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes},
  author={Qian, Zhaozhi and Zhang, Yao and Bica, Ioana and Wood, Angela and van der Schaar, Mihaela},
  booktitle={Advances in neural information processing systems},
  year={2021}
}

License

Copyright 2021, Zhaozhi Qian.

This software is released under the MIT license.

Owner
Zhaozhi Qian
Zhaozhi Qian
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021