Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

Overview

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin is a treatment effect estimation method tailored for observational studies with longitudinal data. Specifically, it applies to the LIP setting: Longitudinal, Irregular and Point treatment. In these studies, the covariates are observed at irregular intervals leading to treatment allocation; the outcomes are measured longitudinally before and after the treatment; the treatment is assigned at a specific time point and stays unchanged during the study.

The key insight of SyncTwin is to fully leverage the pre-treatment outcomes. It uses the temporal structure in the outcome time series to improve the accuracy of counterfactual prediction. It further uses the pre-treatment outcomes to control the estimation error on the individual level. Finally, the method enables interpretability by example: the user can examine the key contributing examples that leads to the estimate.

Installation

To run the code locally, make sure to first install the required python packages specified in requirements.txt. Python 3.7 is recommended for best compatibility. Note that tensorflow and GPy are only needed for running the benchmarks. The directory clairvoyance contains a streamlined version of the clairvoyance library. It is used to run the benchmarks CRN and RMSN.

For some benchmarks (SC, MC-NNM, 1NN), we use their public implementations in the R language. To run these benchmarks, please install R and the dependencies listed in requirements_R.txt.

For coda users, an environment YAML file environment.yml is provided, which includes both Python and R dependencies.

Usage

Scripts for reproducing paper experiments are provided under the directory experiments/.

The reproduce_all.sh shell script contains commands to reproduce all tables and figures in the paper. The Fig[x].sh or Tab[x].sh shell script contain commands to generate results for individual figures or tables. The Fig[x].ipynb notebooks contain commands to create the visualizations. The results will be written in the results folder. For instance, Tab2_C1_MAE.txt corresponds to the first Column of Table 2.

An implementation of SyncTwin is provided in the file SyncTwin.py. Note that SyncTwin is a general framework agnostic to the exact architectural choice of encoder and decoder. In this implementation, we use attentive GRU-D encoder and time-LSTM decoder. In the simulations, SyncTwin is trained in pkpd_sim3_model_training.py.

Citation

If you find the software useful, please consider citing the following paper:

@inproceedings{synctwin2021,
  title={SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes},
  author={Qian, Zhaozhi and Zhang, Yao and Bica, Ioana and Wood, Angela and van der Schaar, Mihaela},
  booktitle={Advances in neural information processing systems},
  year={2021}
}

License

Copyright 2021, Zhaozhi Qian.

This software is released under the MIT license.

Owner
Zhaozhi Qian
Zhaozhi Qian
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022