Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

Overview

How Well Do Self-Supervised Models Transfer?

This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Models Transfer?

Requirements

This codebase has been tested with the following package versions:

python=3.6.8
torch=1.2.0
torchvision=0.4.0
PIL=7.1.2
numpy=1.18.1
scipy=1.2.1
pandas=1.0.3
tqdm=4.31.1
sklearn=0.22.2

Pre-trained Models

In the paper we evaluate 14 pre-trained ResNet50 models, 13 self-supervised and 1 supervised. To download and prepare all models in the same format, run:

python download_and_prepare_models.py

This will prepare the models in the same format and save them in a directory named models.

Note 1: For SimCLR-v1 and SimCLR-v2, the TensorFlow checkpoints need to be downloaded manually (using the links in the table below) and converted into PyTorch format (using https://github.com/tonylins/simclr-converter and https://github.com/Separius/SimCLRv2-Pytorch, respectively).

Note 2: In order to convert BYOL, you may need to install some packages by running:

pip install jax jaxlib dill git+https://github.com/deepmind/dm-haiku

Below are links to the pre-trained weights used.

Model URL
InsDis https://www.dropbox.com/sh/87d24jqsl6ra7t2/AACcsSIt1_Njv7GsmsuzZ6Sta/InsDis.pth
MoCo-v1 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v1_200ep/moco_v1_200ep_pretrain.pth.tar
PCL-v1 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v1_epoch200.pth.tar
PIRL https://www.dropbox.com/sh/87d24jqsl6ra7t2/AADN4jKnvTI0U5oT6hTmQZz8a/PIRL.pth
PCL-v2 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v2_epoch200.pth.tar
SimCLR-v1 https://storage.cloud.google.com/simclr-gcs/checkpoints/ResNet50_1x.zip
MoCo-v2 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
SimCLR-v2 https://console.cloud.google.com/storage/browser/simclr-checkpoints/simclrv2/pretrained/r50_1x_sk0
SeLa-v2 https://dl.fbaipublicfiles.com/deepcluster/selav2_400ep_pretrain.pth.tar
InfoMin https://www.dropbox.com/sh/87d24jqsl6ra7t2/AAAzMTynP3Qc8mIE4XWkgILUa/InfoMin_800.pth
BYOL https://storage.googleapis.com/deepmind-byol/checkpoints/pretrain_res50x1.pkl
DeepCluster-v2 https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
SwAV https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
Supervised We use weights from torchvision.models.resnet50(pretrained=True)

Datasets

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    CIFAR10/
    DTD/
    ...
ssl-transfer/
    datasets/
    models/
    readme.md
    ...

Many-shot (Linear)

We provide the code for our linear evaluation in linear.py.

To evaluate DeepCluster-v2 on CIFAR10 given our pre-computed best regularisation hyperparameter, run:

python linear.py --dataset cifar10 --model deepcluster-v2 --C 0.316

The test accuracy should be close to 94.07%, the value reported in Table 1 of the paper.

To evaluate the Supervised baseline, run:

python linear.py --dataset cifar10 --model supervised --C 0.056

This model should achieve close to 91.47%.

To search for the best regularisation hyperparameter on the validation set, exclude the --C argument:

python linear.py --dataset cifar10 --model supervised

Finally, when using SimCLR-v1 or SimCLR-v2, always use the --no-norm argument:

python linear.py --dataset cifar10 --model simclr-v1 --no-norm

Many-shot (Finetune)

We provide code for finetuning in finetune.py.

To finetune DeepCluster-v2 on CIFAR10, run:

python finetune.py --dataset cifar10 --model deepcluster-v2

This model should achieve close to 97.06%, the value reported in Table 1 of the paper.

Few-shot (Kornblith & CD-FSL)

We provide the code for our few-shot evaluation in few_shot.py.

To evaluate DeepCluster-v2 on EuroSAT in a 5-way 5-shot setup, run:

python few_shot.py --dataset eurosat --model deepcluster-v2 --n-way 5 --n-support 5

The test accuracy should be close to 88.39% ± 0.49%, the value reported in Table 2 of the paper.

Or, to evaluate the Supervised baseline on ChestX in a 5-way 50-shot setup, run:

python few_shot.py --dataset chestx --model supervised --n-way 5 --n-support 50

This model should achieve close to 32.34% ± 0.45%.

Object Detection

We use the detectron2 framework to train our models on PASCAL VOC object detection.

Below is an outline of the expected file structure, including config files, converted models and the detectron2 framework:

detectron2/
    tools/
        train_net.py
        ...
    ...
ssl-transfer/
    detectron2-configs/
        finetune/
            byol.yaml
            ...
        frozen/
            byol.yaml
            ...
    models/
        detectron2/
            byol.pkl
            ...
        ...
    ...

To set it up, perform the following steps:

  1. Install detectron2 (requries PyTorch 1.5 or newer). We expect the installed framework to be located at the same level as this repository, see outline of expected file structure above.
  2. Convert the models into the format used by detectron2 by running python convert_to_detectron2.py. The converted models will be saved in a directory called detectron2 inside the models directory.

We include the config files for the frozen training in detectron2-configs/frozen and for full finetuning in detectron2-configs/finetune. In order to train models, navigate into detectron2/tools/. We can now train e.g. BYOL with a frozen backbone on 1 GPU by running:

./train_net.py --num-gpus 1 --config-file ../../ssl-transfer/detectron2-configs/frozen/byol.yaml OUTPUT_DIR ./output/byol-frozen

This model should achieve close to 82.01 AP50, the value reported in Table 3 of the paper.

Surface Normal Estimation

The code for running the surface normal estimation experiments is given in the surface-normal-estimation. We use the MIT CSAIL Semantic Segmentation Toolkit, but there is also a docker configuration file that can be used to build a container with all the dependencies installed. One can train a model with a command like:

./scripts/train_finetune_models.sh <pretrained-model-path> <checkpoint-directory>

and the resulting model can be evaluated with

./scripts/test_models.sh <checkpoint-directory>

Semantic Segmentation

We also use the same framework performing semantic segmentation. As per the surface normal estimation experiments, we include a docker configuration file to make getting dependencies easier. Before training a semantic segmentation model you will need to change the paths in the relevant YAML configuration file to point to where you have stored the pre-trained models and datasets. Once this is done the training script can be run with, e.g.,

python train.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

where selfsupconfig/byol.yaml is the aforementioned configuration file. The resulting model can be evaluated with

python eval_multipro.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

Citation

If you find our work useful for your research, please consider citing our paper:

@inproceedings{Ericsson2021HowTransfer,
    title = {{How Well Do Self-Supervised Models Transfer?}},
    year = {2021},
    booktitle = {CVPR},
    author = {Ericsson, Linus and Gouk, Henry and Hospedales, Timothy M.},
    url = {http://arxiv.org/abs/2011.13377},
    arxivId = {2011.13377}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023