Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

Overview

How Well Do Self-Supervised Models Transfer?

This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Models Transfer?

Requirements

This codebase has been tested with the following package versions:

python=3.6.8
torch=1.2.0
torchvision=0.4.0
PIL=7.1.2
numpy=1.18.1
scipy=1.2.1
pandas=1.0.3
tqdm=4.31.1
sklearn=0.22.2

Pre-trained Models

In the paper we evaluate 14 pre-trained ResNet50 models, 13 self-supervised and 1 supervised. To download and prepare all models in the same format, run:

python download_and_prepare_models.py

This will prepare the models in the same format and save them in a directory named models.

Note 1: For SimCLR-v1 and SimCLR-v2, the TensorFlow checkpoints need to be downloaded manually (using the links in the table below) and converted into PyTorch format (using https://github.com/tonylins/simclr-converter and https://github.com/Separius/SimCLRv2-Pytorch, respectively).

Note 2: In order to convert BYOL, you may need to install some packages by running:

pip install jax jaxlib dill git+https://github.com/deepmind/dm-haiku

Below are links to the pre-trained weights used.

Model URL
InsDis https://www.dropbox.com/sh/87d24jqsl6ra7t2/AACcsSIt1_Njv7GsmsuzZ6Sta/InsDis.pth
MoCo-v1 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v1_200ep/moco_v1_200ep_pretrain.pth.tar
PCL-v1 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v1_epoch200.pth.tar
PIRL https://www.dropbox.com/sh/87d24jqsl6ra7t2/AADN4jKnvTI0U5oT6hTmQZz8a/PIRL.pth
PCL-v2 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v2_epoch200.pth.tar
SimCLR-v1 https://storage.cloud.google.com/simclr-gcs/checkpoints/ResNet50_1x.zip
MoCo-v2 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
SimCLR-v2 https://console.cloud.google.com/storage/browser/simclr-checkpoints/simclrv2/pretrained/r50_1x_sk0
SeLa-v2 https://dl.fbaipublicfiles.com/deepcluster/selav2_400ep_pretrain.pth.tar
InfoMin https://www.dropbox.com/sh/87d24jqsl6ra7t2/AAAzMTynP3Qc8mIE4XWkgILUa/InfoMin_800.pth
BYOL https://storage.googleapis.com/deepmind-byol/checkpoints/pretrain_res50x1.pkl
DeepCluster-v2 https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
SwAV https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
Supervised We use weights from torchvision.models.resnet50(pretrained=True)

Datasets

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    CIFAR10/
    DTD/
    ...
ssl-transfer/
    datasets/
    models/
    readme.md
    ...

Many-shot (Linear)

We provide the code for our linear evaluation in linear.py.

To evaluate DeepCluster-v2 on CIFAR10 given our pre-computed best regularisation hyperparameter, run:

python linear.py --dataset cifar10 --model deepcluster-v2 --C 0.316

The test accuracy should be close to 94.07%, the value reported in Table 1 of the paper.

To evaluate the Supervised baseline, run:

python linear.py --dataset cifar10 --model supervised --C 0.056

This model should achieve close to 91.47%.

To search for the best regularisation hyperparameter on the validation set, exclude the --C argument:

python linear.py --dataset cifar10 --model supervised

Finally, when using SimCLR-v1 or SimCLR-v2, always use the --no-norm argument:

python linear.py --dataset cifar10 --model simclr-v1 --no-norm

Many-shot (Finetune)

We provide code for finetuning in finetune.py.

To finetune DeepCluster-v2 on CIFAR10, run:

python finetune.py --dataset cifar10 --model deepcluster-v2

This model should achieve close to 97.06%, the value reported in Table 1 of the paper.

Few-shot (Kornblith & CD-FSL)

We provide the code for our few-shot evaluation in few_shot.py.

To evaluate DeepCluster-v2 on EuroSAT in a 5-way 5-shot setup, run:

python few_shot.py --dataset eurosat --model deepcluster-v2 --n-way 5 --n-support 5

The test accuracy should be close to 88.39% ± 0.49%, the value reported in Table 2 of the paper.

Or, to evaluate the Supervised baseline on ChestX in a 5-way 50-shot setup, run:

python few_shot.py --dataset chestx --model supervised --n-way 5 --n-support 50

This model should achieve close to 32.34% ± 0.45%.

Object Detection

We use the detectron2 framework to train our models on PASCAL VOC object detection.

Below is an outline of the expected file structure, including config files, converted models and the detectron2 framework:

detectron2/
    tools/
        train_net.py
        ...
    ...
ssl-transfer/
    detectron2-configs/
        finetune/
            byol.yaml
            ...
        frozen/
            byol.yaml
            ...
    models/
        detectron2/
            byol.pkl
            ...
        ...
    ...

To set it up, perform the following steps:

  1. Install detectron2 (requries PyTorch 1.5 or newer). We expect the installed framework to be located at the same level as this repository, see outline of expected file structure above.
  2. Convert the models into the format used by detectron2 by running python convert_to_detectron2.py. The converted models will be saved in a directory called detectron2 inside the models directory.

We include the config files for the frozen training in detectron2-configs/frozen and for full finetuning in detectron2-configs/finetune. In order to train models, navigate into detectron2/tools/. We can now train e.g. BYOL with a frozen backbone on 1 GPU by running:

./train_net.py --num-gpus 1 --config-file ../../ssl-transfer/detectron2-configs/frozen/byol.yaml OUTPUT_DIR ./output/byol-frozen

This model should achieve close to 82.01 AP50, the value reported in Table 3 of the paper.

Surface Normal Estimation

The code for running the surface normal estimation experiments is given in the surface-normal-estimation. We use the MIT CSAIL Semantic Segmentation Toolkit, but there is also a docker configuration file that can be used to build a container with all the dependencies installed. One can train a model with a command like:

./scripts/train_finetune_models.sh <pretrained-model-path> <checkpoint-directory>

and the resulting model can be evaluated with

./scripts/test_models.sh <checkpoint-directory>

Semantic Segmentation

We also use the same framework performing semantic segmentation. As per the surface normal estimation experiments, we include a docker configuration file to make getting dependencies easier. Before training a semantic segmentation model you will need to change the paths in the relevant YAML configuration file to point to where you have stored the pre-trained models and datasets. Once this is done the training script can be run with, e.g.,

python train.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

where selfsupconfig/byol.yaml is the aforementioned configuration file. The resulting model can be evaluated with

python eval_multipro.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

Citation

If you find our work useful for your research, please consider citing our paper:

@inproceedings{Ericsson2021HowTransfer,
    title = {{How Well Do Self-Supervised Models Transfer?}},
    year = {2021},
    booktitle = {CVPR},
    author = {Ericsson, Linus and Gouk, Henry and Hospedales, Timothy M.},
    url = {http://arxiv.org/abs/2011.13377},
    arxivId = {2011.13377}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022