METER: Multimodal End-to-end TransformER

Related tags

Deep LearningMETER
Overview

METER

Code and pre-trained models will be publicized soon.

Citation

@article{dou2021meter,
  title={An Empirical Study of Training End-to-End Vision-and-Language Transformers},
  author={Dou, Zi-Yi and Xu, Yichong and Gan, Zhe and Wang, Jianfeng and Wang, Shuohang and Wang, Lijuan and Zhu, Chenguang and Peng, Nanyun and Liu, Zicheng and Zeng, Michael},
  journal={arXiv},
  year={2021},
  url={https://arxiv.org/abs/2111.02387},
}

Acknowledgements

The code is based on ViLT and some of the code is borrowed from CLIP and Swin-Transformer.

Comments
  • questions about VQA

    questions about VQA

    Hi, could you share the VQAv2 result fine-tuning with image resolution of 384, the result implemented by me is 76.52 and it is based on your checkpoint pretrained on COCO, SBU, VG, CC3M.

    opened by Henry9805 20
  • Some questions for the paper

    Some questions for the paper

    What is the difference between the score in Table 5 and Table 8? 77.19 in Table 5 results on test-dev set of VQAv2, and, 77.68 in Table 8 results on test-dev set of VQAv2.

    opened by wanng-ide 17
  • How much is the per gpu batch size?

    How much is the per gpu batch size?

    How much is the per gpu batch size? total batchsize is 4096, GPU num is 8, so per gpu batch size is 512? But I use A100 GPU, the batch size only can be set 16?

    opened by qiao1025566574 5
  • pretraining task

    pretraining task

    Hello, the author, great work! I'm curious whether you have tried to add Image Text Contrast Learning in the pretraining task? Because in the ALBEF paper, they reported that the ITC task had a great impact on the experimental results.

    opened by mactavish91 4
  • Inference with Fine-tuned SNLI Model

    Inference with Fine-tuned SNLI Model

    Hi,

    Thank you for the great work and the fine-tuned models, but I just wanted to ask how I should go about running inference with the fine-tuned model. Currently, I run into this error in my notebook:

    1 model = METERTransformerSS(cfg)
    ----> 2 model.load_state_dict(torch.load("/content/meter_clip16_288_roberta_snli.ckpt")['state_dict'])
    
    [/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in load_state_dict(self, state_dict, strict)
       1050         if len(error_msgs) > 0:
       1051             raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    -> 1052                                self.__class__.__name__, "\n\t".join(error_msgs)))
       1053         return _IncompatibleKeys(missing_keys, unexpected_keys)
       1054 
    
    RuntimeError: Error(s) in loading state_dict for METERTransformerSS:
    	Unexpected key(s) in state_dict: "vit_model.token_embedding.weight". 
    	size mismatch for vit_model.visual.positional_embedding: copying a param with shape torch.Size([577, 768]) from checkpoint, the shape in current model is torch.Size([197, 768]).
    

    I wonder if this is due to how I configure the model or not, is there a specific way I should create the config for inference? Thank you in advance.

    opened by sramshetty 4
  • The model meter_clip16_288_roberta_flickr.ckpt is inconsistent with the network weight parameter dimension

    The model meter_clip16_288_roberta_flickr.ckpt is inconsistent with the network weight parameter dimension

    Hi, Thank you for your excellent work, may I use this model "METER-CLIP16-RoBERTa fine-tuned on Flickr30k IR/TR (resolution: 384^2)" as meter_clip16_288_roberta_flickr.ckpt, why does the code report this error showing inconsistent dimensions, thank you answer my question. Y88) J7_592_AJQR}4LBP4W

    opened by attutude 4
  • Unable to train models faster with more gpus

    Unable to train models faster with more gpus

    Hi, I am facing an issue where, on increasing the number of gpus and nodes, the number of steps for each epoch doesnot change. for eg if I run

    python run.py with data_root=/data/datasets/meter_data_combined num_gpus=4 num_nodes=8 task_mlm_itm_clip_bert per_gpu_batchsize=64 clip16 text_roberta image_size=224 precision=16 datasets='["vg"]'

    the number of steps per epoch is nearly 150k. I observe that the number of steps is 150k when num_gpus=1 num_nodes=1, and when num_gpus=4 num_nodes=8. I made sure that all gpus were being utilized when I set num_gpus=4 num_nodes=8. I also observe that while using num_gpus=4 num_nodes=8, the time for each epoch is ~160 hours in my case, while it is ~30 hours if I set num_gpus=1 num_nodes=1.

    Is there any suggestion that you have for this problem?

    opened by HarmanDotpy 3
  • GPU OOM when pretraining

    GPU OOM when pretraining

    HI, I'm trying to pre-train the METER by using 8 A100 GPUS with the recommended config:

    python run.py with num_gpus=8 num_nodes=1 task_mlm_itm_clip_bert per_gpu_batchsize=32 clip16 text_roberta image_size=288
    

    but the GPU OOM occurred.

    So what is the extract per_gpu_batchsize? And how can I pre-train the model in about 8 days as mentioned in the paper.

    By the way, will the mixed precision training (precision=16) cause a performance drop?

    Many thanks!

    opened by hi-zhenyu 3
  • The training set of using different pretraining datasets.

    The training set of using different pretraining datasets.

    When I tried to reproduce the results in Table 17, I found that using the default learning rate and only using the coco pertaining dataset worked extremely poorly on downstream tasks.

    So, I would like to ask, do you set different training parameters (eg, lr, bs, max epoch, etc) for different pre-training datasets?

    opened by ShiYaya 2
  • question about the pre-trained weights

    question about the pre-trained weights

    Dear authors, Thanks for the great work! I have downloaded the pre-trained weights of ViT-B-16(224)+RoBERTa checkpoint from https://github.com/zdou0830/METER/releases/download/checkpoint2/meter_clip16_224_roberta_pretrain.ckpt, and found that the last layer of the visual encoder "vit_model.visual.transformer.resblocks.11..." is not included in the ckpt file? Did I miss something? Could you please help me to check it?

    opened by Junction4Nako 2
  • About license

    About license

    Thanks for the great work! The codebase is released under an MIT license (https://github.com/zdou0830/METER/blob/main/LICENSE) and an Apache License (https://github.com/zdou0830/METER/blob/main/ViLT_LICENSE).

    I want to know whether the pre-trained models are also released under the same license? Thanks.

    opened by WangWenhao0716 2
  • Pretrained weights of CLIP-ViT-224/32

    Pretrained weights of CLIP-ViT-224/32

    Hi,

    Thanks for the code! I wonder if you plan to release the pretrained weights of CLIP-ViT-224/32 (e.g., METER-CLIP32-RoBERTa (resolution: 224^2) pre-trained on GCC+SBU+COCO+VG)? It would be helpful for those who want to play with your model but don't have enough computational resources. Thanks!

    opened by bfshi 0
  • The last checkpoint or the best one on the Val split?

    The last checkpoint or the best one on the Val split?

    Hi, I'm confused by the testing checkpoint in the downstream tasks.

    I wonder which checkpoint should I use to evaluate, the last ckpt or the saved top-1 on the val split?

    opened by hi-zhenyu 3
  • Why the test results are different using same data?

    Why the test results are different using same data?

    I used pl.seed_everything to set seed,

    pl.seed_everything(_config["seed"], workers=True)
    

    but I still got different result when I tested flickr30k Image2Text Retrieval task on the model trained by myself. First:

    (tensor(0.7382),  tensor(0.9274), tensor(0.9638), tensor(0.8965), tensor(0.9814), tensor(0.9941)) 0)
    

    Second:

    (tensor(0.7366), tensor(0.9294), tensor(0.9656), tensor(0.8975), tensor(0.9814), tensor(0.9941)) 0
    

    I ensure the config files are same. Do you meet this problem?

    opened by qiao1025566574 1
  • ValueError and AttributeError

    ValueError and AttributeError

    Hi, I‘m trying to making "run.py" work for Pre-training, but I got ValueError and AttributeError, and I didn't find a solution, can you help me to check it? Thank you very much!

    Traceback (most recent call last): File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 312, in run_commandline return self.run( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 276, in run run() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/run.py", line 238, in call self.result = self.main_function(*args) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/config/captured_function.py", line 42, in captured_function result = wrapped(*args, **kwargs) File "run.py", line 20, in main dm = MTDataModule(_config, dist=True) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/multitask_datamodule.py", line 19, in init self.dm_dicts = {key: _datamoduleskey for key in datamodule_keys} File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/multitask_datamodule.py", line 19, in self.dm_dicts = {key: _datamoduleskey for key in datamodule_keys} File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/coco_caption_karpathy_datamodule.py", line 7, in init super().init(*args, **kwargs) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/datamodule_base.py", line 60, in init self.tokenizer = get_pretrained_tokenizer(tokenizer) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/datamodule_base.py", line 25, in get_pretrained_tokenizer return RobertaTokenizer.from_pretrained(from_pretrained) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 1672, in from_pretrained resolved_vocab_files[file_id] = cached_path( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/file_utils.py", line 1271, in cached_path output_path = get_from_cache( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/file_utils.py", line 1494, in get_from_cache raise ValueError( ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "run.py", line 16, in def main(_config): File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 190, in automain self.run_commandline() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 347, in run_commandline print_filtered_stacktrace() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 493, in print_filtered_stacktrace print(format_filtered_stacktrace(filter_traceback), file=sys.stderr) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 528, in format_filtered_stacktrace return "".join(filtered_traceback_format(tb_exception)) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 568, in filtered_traceback_format current_tb = tb_exception.exc_traceback AttributeError: 'TracebackException' object has no attribute 'exc_traceback'

    opened by huhuhud 3
  • Pre-trained models for the Merged Attention Model?

    Pre-trained models for the Merged Attention Model?

    Thanks for the amazing repository. The code is really clean. If I understand correctly, the current implementation is co-attention model, and same for pre-trained weights. I wanted to know if you had plans to release the merge attention model weights as well! Thanks in advance!

    opened by TheShadow29 1
Owner
Zi-Yi Dou
Zi-Yi Dou (窦子轶).
Zi-Yi Dou
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022