Fuzzing JavaScript Engines with Aspect-preserving Mutation

Related tags

Deep LearningDIE
Overview

DIE

Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details.

Environment

Tested on Ubuntu 18.04 with following environment.

  • Python v3.6.10
  • npm v6.14.6
  • n v6.7.0

General Setup

For nodejs and npm,

$ sudo apt-get -y install npm
$ sudo npm install -g n
$ sudo n stable

For redis-server,

$ sudo apt install redis-server

we choose clang-6.0 to compile afl and browsers smoothly.

$ sudo apt-get -y install clang-6.0

DIE Setup

To setup environment for AFL,

$ cd fuzz/scripts
$ sudo ./prepare.sh

To compile whole project,

$ ./compile.sh

Server Setup

  • Make Corpus Directory (We used Die-corpus as corpus)
$ git clone https://github.com/sslab-gatech/DIE-corpus.git
$ python3 ./fuzz/scripts/make_initial_corpus.py ./DIE-corpus ./corpus
  • Make ssh-tunnel for connection with redis-server
$ ./fuzz/scripts/redis.py
  • Dry run with corpus
$ ./fuzz/scripts/populate.sh [target binary path] [path of DIE-corpus dir] [target js engine (ch/jsc/v8/ffx)]
# Example
$ ./fuzz/scripts/populate.sh ~/ch ./DIE-corpus ch

It's done! Your corpus is well executed and the data should be located on redis-server.

Tips

To check the redis-data,

$ redis-cli -p 9000
127.0.0.1:9000> keys *

If the result contains "crashBitmap", "crashQueue", "pathBitmap", "newPathsQueue" keys, the fuzzer was well registered and executed.

Client Setup

  • Make ssh-tunnel for connection with redis-server
$ ./fuzz/scripts/redis.py
  • Usage
$ ./fuzz/scripts/run.sh [target binary path] [path of DIE-corpus dir] [target js engine (ch/jsc/v8/ffx)]
# Example
$ ./fuzz/scripts/run.sh ~/ch ./DIE-corpus ch
  • Check if it's running
$ tmux ls

You can find a session named fuzzer if it's running.

Typer

We used d8 to profile type information. So, please change d8_path in fuzz/TS/typer/typer.py before execution.

cd fuzz/TS/typer
python3 typer.py [corpus directory]

*.jsi file will be created if instrumentation works well. *.t file will be created if profiling works well.

CVEs

If you find bugs and get CVEs by running DIE, please let us know.

  • ChakraCore: CVE-2019-0609, CVE-2019-1023, CVE-2019-1300, CVE-2019-0990, CVE-2019-1092
  • JavaScriptCore: CVE-2019-8676, CVE-2019-8673, CVE-2019-8811, CVE-2019-8816
  • V8: CVE-2019-13730, CVE-2019-13764, CVE-2020-6382

Contacts

Citation

@inproceedings{park:die,
  title        = {{Fuzzing JavaScript Engines with Aspect-preserving Mutation}},
  author       = {Soyeon Park and Wen Xu and Insu Yun and Daehee Jang and Taesoo Kim},
  booktitle    = {Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland)},
  month        = may,
  year         = 2020,
  address      = {San Francisco, CA},
}
Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022