For visualizing the dair-v2x-i dataset

Overview

3D Detection & Tracking Viewer

The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the code below: https://github.com/hailanyi/3D-Detection-Tracking-Viewer

This project was developed for viewing 3D object detection results from the Dair-V2X-I datasets.

It supports rendering 3D bounding boxes and rendering boxes on images.

Features

  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for convert tools, other one for visualization of 3D detection results.

Change log

  • (2022.02.01) Adapted to the Dair-V2X-I dataset

Prepare data

  • Dair-V2X-I detection dataset
  • Convert the Dair-V2X-I dataset to kitti format using the conversion tool

Requirements (Updated 2021.11.2)

python==3.7.11
numpy==1.21.4
vedo==2022.0.1
vtk==8.1.2
opencv-python==4.1.1.26
matplotlib==3.4.3
open3d==0.14.1

It is recommended to use anaconda to create the visualization environment

conda create -n dair_vis python=3.8

To activate this environment, use

conda activate dair_vis

Install the requirements

pip install -r requirements.txt

To deactivate an active environment, use

conda deactivate

Convert tools

  • Prepare a dataset of the following structure:
  • "kitti_format" must be an empty folder to store the conversion result
  • "source_format" to store the source Dair-V2X-I datasets.
# For Dair-V2X-I Dataset  
dair_v2x_i
├── kitti_format
├── source_format
│   ├── single-infrastructure-side
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   └── label
│   │       ├── camera
│   │       └── virtuallidar
│   ├── single-infrastructure-side-example
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   ├── image
│   │   ├── label
│   │   │   ├── camera
│   │   │   └── virtuallidar
│   │   └── velodyne
│   ├── single-infrastructure-side-image
│   └── single-infrastructure-side-velodyne

  • If you have the same folder structure, you only need change the "root path" to your local path from config/config.yaml
  • Running the jupyter notebook server and open the "convert.ipynb"
  • The code is very simple , so there are no input parameters for advanced customization, you need to comment or copy the code to implemented separately following functions : -Convert calib files to KITTI format -Convert camera-based label files to KITTI format -Convert lidar-based label files to KITTI format -Convert image folders to KITTI format -Convert velodyne folders to KITTI format

After the convet you will get the following result. the

dair_v2x_i
├── kitti_format
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── label_velodyne
│   └── velodyne
 
  • The label_2 base the camera label, and use the lidar label information replace the size information(w,h,l). In the camera view looks like better.
  • The label_velodyne base the velodyne label.
  • P2 represents the camera internal reference, which is a 3×3 matrix, not the same as KITTI. It convert frome the "cam_K" of the json file.
  • Tr_velo_to_cam: represents the camera to lidar transformation matrix, as a 3×4 matrix.

Usage

1. Set the path to the dataset folder used for input to the visualizer

If you have completed the conversion operation, the path should have been set correctly. Otherwise you need to set "root_path" in the config/config.yaml to the correct path

2. Choose whether camera or lidar based tagging for visualization

You need to set the "label_select" parameter in config.yaml to "cam" or "vel", to specify the label frome label_2 or velodyne_label.

2. Run and Terminate

  • You can start the program with the following command
python dair_3D_detection_viewer.py
  • Pressing space in the lidar window will display the next frame
  • Terminating the program is more complicated, you cannot terminate the program at static image status. You need to press the space quickly to make the frames play continuously, and when it becomes obvious that the system is overloaded with resources and the program can't respond, press Ctrl-C in the terminal window to terminate it. Try a few more times and you will eventually get the hang of it.

Notes on the Dair-V2X-I dataset

  • In the calib file of this dataset, "cam_K" is the real intrinsic matrix parameter of the camera, not "P". Although they are very close in value and structure.
  • There are multiple camera images with different focal and perspectives in this dataset, and the camera intrinsic matrix reference will change with each image file. Therefore, when using this dataset, please make sure that the calib file you are using corresponds to the image file (e.g. do not use only the 000000.txt parameter for all image files)
  • The sequence of files in this dataset is non-contiguous (e.g. missing the 000023), do not only use 00000 to lens(dataset) to get the sequence of file names directly.
  • The dataset provides optimized labels for both lidar and camera, and after testing, there are errors in the projection of the lidar label on camera (but the projection matrix is correct, only the label itself has issues). Likewise, there is a disadvantage of using the camera's label in lidar. Therefore it is recommended to use the corresponding label for lidar, and use the fused label for the camera.
  • There are some other objects in the label, for example you can see some trafficcone.
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021