PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Overview

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

PyTorch code for the ICCV 2021 paper:
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, Zsolt Kira
International Conference on Computer Vision (ICCV), 2021
[arXiv] [pdf] [project]

Abstract

Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learner's classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.

Installation

Prerequisites

  • python == 3.6
  • torch == 1.0.1
  • torchvision >= 0.2.1

Setup

Datasets

Download/Extract the following datasets to the dataset folder under the project root directory.

  • For CIFAR-10 and CIFAR-100, download the python version dataset here.

Training

All commands should be run under the project root directory.

sh experiments/cifar100-fivetask.sh # tables 1,2
sh experiments/cifar100-tentask.sh # tables 1,2
sh experiments/cifar100-twentytask.sh # tables 1,2

Results

Results are generated for various task sizes. See the main text for full details. Numbers represent final accuracy in three runs (higher the better).

CIFAR-100 (no coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Base 16.4 ± 0.4 8.8 ± 0.1 4.4 ± 0.3
LwF 17.0 ± 0.1 9.2 ± 0.0 4.7 ± 0.1
LwF.MC 32.5 ± 1.0 17.1 ± 0.1 7.7 ± 0.5
DGR 14.4 ± 0.4 8.1 ± 0.1 4.1 ± 0.3
DeepInversion 18.8 ± 0.3 10.9 ± 0.6 5.7 ± 0.3
Ours 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

CIFAR-100 (with 2000 image coreset)

tasks 5 10 20
UB 69.9 ± 0.2 69.9 ± 0.2 69.9 ± 0.2
Naive Rehearsal 34.0 ± 0.2 24.0 ± 1.0 14.9 ± 0.7
LwF 39.4 ± 0.3 27.4 ± 0.8 16.6 ± 0.4
E2E 47.4 ± 0.8 38.4 ± 1.3 32.7 ± 1.9
BiC 53.7 ± 0.4 45.9 ± 1.8 37.5 ± 3.2
Ours (no coreset) 43.9 ± 0.9 33.7 ± 1.2 20.0 ± 1.4

Acknowledgement

This work is supported by Samsung Research America.

Citation

If you found our work useful for your research, please cite our work:

@article{smith2021always,
  author    = {Smith, James and Hsu, Yen-Chang and Balloch, Jonathan and Shen, Yilin and Jin, Hongxia and Kira, Zsolt},
  title     = {Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {9374-9384}
}
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022