An easy-to-use app to visualise attentions of various VQA models.

Overview

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) Open in Streamlit

An easy-to-use app to visualise attentions of various VQA models. Please click here to see a live demo of the app!

top 7 predictions

Models
Requirements
Installation
How to run
How to use
Contributing
• Acknowledgements

Models

• MFB - Multi-modal Factorized Bilinear Pooling with Co-Attention Learning for Visual Question Answering
Zhou Yu, Jun Yu, Jianping Fan, Dacheng Tao
Arxiv

• (Coming soon) MCAN - Deep Modular Co-Attention Networks for Visual Question Answering
Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, Qi Tian
Arvix

Requirements

Please check the requirements.txt file for the version numbers.

  1. opencv_python==4.4.0.46
  2. numpy==1.19.4
  3. pandas==1.1.4
  4. torch==1.4.0
  5. matplotlib==3.3.2
  6. gdown==3.12.2
  7. seaborn==0.11.0
  8. dotmap==1.3.23
  9. streamlit==0.70.0
  10. Pillow==8.0.1
  11. PyYAML==5.3.1

Installation

  1. Install Anaconda
  2. Clone this repository and cd into it.
    git clone https://github.com/apugoneappu/ask_me_anything.git && cd ask_me_anything
  3. In a new environment (new_env)
    pip install -r requirements.txt

How to run

From the directory of this repository, do the following -

  1. conda activate new_env
  2. streamlit run main.py
  3. In a browser tab, open the Network URL displayed in your terminal.

Done! 🎉

How to use

input page image attentions text attentions

Contributing

First of all, thank you for wanting to contribute to this work! I will try and make your job as easy as possible. Detailed instructions coming soon ...

Acknowledgements

This repository has been built by modifying the OpenVQA repository.

I would also like to thank Yash Khandelwal, Nikhil Shah and Chinmay Singh for their support and amazing suggestions!

Huge thanks to Streamlit for making all of this possible and for Streamlit Sharing that enables free hosting of this app! ❤️

constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022