Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Overview

Machine Learning From Scratch

About

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent and accessible way.

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/ML-From-Scratch
$ cd ML-From-Scratch
$ python setup.py install

Examples

Polynomial Regression

$ python mlfromscratch/examples/polynomial_regression.py

Figure: Training progress of a regularized polynomial regression model fitting
temperature data measured in Linköping, Sweden 2016.

Classification With CNN

$ python mlfromscratch/examples/convolutional_neural_network.py

+---------+
| ConvNet |
+---------+
Input Shape: (1, 8, 8)
+----------------------+------------+--------------+
| Layer Type           | Parameters | Output Shape |
+----------------------+------------+--------------+
| Conv2D               | 160        | (16, 8, 8)   |
| Activation (ReLU)    | 0          | (16, 8, 8)   |
| Dropout              | 0          | (16, 8, 8)   |
| BatchNormalization   | 2048       | (16, 8, 8)   |
| Conv2D               | 4640       | (32, 8, 8)   |
| Activation (ReLU)    | 0          | (32, 8, 8)   |
| Dropout              | 0          | (32, 8, 8)   |
| BatchNormalization   | 4096       | (32, 8, 8)   |
| Flatten              | 0          | (2048,)      |
| Dense                | 524544     | (256,)       |
| Activation (ReLU)    | 0          | (256,)       |
| Dropout              | 0          | (256,)       |
| BatchNormalization   | 512        | (256,)       |
| Dense                | 2570       | (10,)        |
| Activation (Softmax) | 0          | (10,)        |
+----------------------+------------+--------------+
Total Parameters: 538570

Training: 100% [------------------------------------------------------------------------] Time: 0:01:55
Accuracy: 0.987465181058

Figure: Classification of the digit dataset using CNN.

Density-Based Clustering

$ python mlfromscratch/examples/dbscan.py

Figure: Clustering of the moons dataset using DBSCAN.

Generating Handwritten Digits

$ python mlfromscratch/unsupervised_learning/generative_adversarial_network.py

+-----------+
| Generator |
+-----------+
Input Shape: (100,)
+------------------------+------------+--------------+
| Layer Type             | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense                  | 25856      | (256,)       |
| Activation (LeakyReLU) | 0          | (256,)       |
| BatchNormalization     | 512        | (256,)       |
| Dense                  | 131584     | (512,)       |
| Activation (LeakyReLU) | 0          | (512,)       |
| BatchNormalization     | 1024       | (512,)       |
| Dense                  | 525312     | (1024,)      |
| Activation (LeakyReLU) | 0          | (1024,)      |
| BatchNormalization     | 2048       | (1024,)      |
| Dense                  | 803600     | (784,)       |
| Activation (TanH)      | 0          | (784,)       |
+------------------------+------------+--------------+
Total Parameters: 1489936

+---------------+
| Discriminator |
+---------------+
Input Shape: (784,)
+------------------------+------------+--------------+
| Layer Type             | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense                  | 401920     | (512,)       |
| Activation (LeakyReLU) | 0          | (512,)       |
| Dropout                | 0          | (512,)       |
| Dense                  | 131328     | (256,)       |
| Activation (LeakyReLU) | 0          | (256,)       |
| Dropout                | 0          | (256,)       |
| Dense                  | 514        | (2,)         |
| Activation (Softmax)   | 0          | (2,)         |
+------------------------+------------+--------------+
Total Parameters: 533762

Figure: Training progress of a Generative Adversarial Network generating
handwritten digits.

Deep Reinforcement Learning

$ python mlfromscratch/examples/deep_q_network.py

+----------------+
| Deep Q-Network |
+----------------+
Input Shape: (4,)
+-------------------+------------+--------------+
| Layer Type        | Parameters | Output Shape |
+-------------------+------------+--------------+
| Dense             | 320        | (64,)        |
| Activation (ReLU) | 0          | (64,)        |
| Dense             | 130        | (2,)         |
+-------------------+------------+--------------+
Total Parameters: 450

Figure: Deep Q-Network solution to the CartPole-v1 environment in OpenAI gym.

Image Reconstruction With RBM

$ python mlfromscratch/examples/restricted_boltzmann_machine.py

Figure: Shows how the network gets better during training at reconstructing
the digit 2 in the MNIST dataset.

Evolutionary Evolved Neural Network

$ python mlfromscratch/examples/neuroevolution.py

+---------------+
| Model Summary |
+---------------+
Input Shape: (64,)
+----------------------+------------+--------------+
| Layer Type           | Parameters | Output Shape |
+----------------------+------------+--------------+
| Dense                | 1040       | (16,)        |
| Activation (ReLU)    | 0          | (16,)        |
| Dense                | 170        | (10,)        |
| Activation (Softmax) | 0          | (10,)        |
+----------------------+------------+--------------+
Total Parameters: 1210

Population Size: 100
Generations: 3000
Mutation Rate: 0.01

[0 Best Individual - Fitness: 3.08301, Accuracy: 10.5%]
[1 Best Individual - Fitness: 3.08746, Accuracy: 12.0%]
...
[2999 Best Individual - Fitness: 94.08513, Accuracy: 98.5%]
Test set accuracy: 96.7%

Figure: Classification of the digit dataset by a neural network which has
been evolutionary evolved.

Genetic Algorithm

$ python mlfromscratch/examples/genetic_algorithm.py

+--------+
|   GA   |
+--------+
Description: Implementation of a Genetic Algorithm which aims to produce
the user specified target string. This implementation calculates each
candidate's fitness based on the alphabetical distance between the candidate
and the target. A candidate is selected as a parent with probabilities proportional
to the candidate's fitness. Reproduction is implemented as a single-point
crossover between pairs of parents. Mutation is done by randomly assigning
new characters with uniform probability.

Parameters
----------
Target String: 'Genetic Algorithm'
Population Size: 100
Mutation Rate: 0.05

[0 Closest Candidate: 'CJqlJguPlqzvpoJmb', Fitness: 0.00]
[1 Closest Candidate: 'MCxZxdr nlfiwwGEk', Fitness: 0.01]
[2 Closest Candidate: 'MCxZxdm nlfiwwGcx', Fitness: 0.01]
[3 Closest Candidate: 'SmdsAklMHn kBIwKn', Fitness: 0.01]
[4 Closest Candidate: '  lotneaJOasWfu Z', Fitness: 0.01]
...
[292 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
[293 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
[294 Answer: 'Genetic Algorithm']

Association Analysis

$ python mlfromscratch/examples/apriori.py
+-------------+
|   Apriori   |
+-------------+
Minimum Support: 0.25
Minimum Confidence: 0.8
Transactions:
    [1, 2, 3, 4]
    [1, 2, 4]
    [1, 2]
    [2, 3, 4]
    [2, 3]
    [3, 4]
    [2, 4]
Frequent Itemsets:
    [1, 2, 3, 4, [1, 2], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 4], [2, 3, 4]]
Rules:
    1 -> 2 (support: 0.43, confidence: 1.0)
    4 -> 2 (support: 0.57, confidence: 0.8)
    [1, 4] -> 2 (support: 0.29, confidence: 1.0)

Implementations

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Deep Learning

Contact

If there's some implementation you would like to see here or if you're just feeling social, feel free to email me or connect with me on LinkedIn.

Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Ian Covert 130 Jan 01, 2023
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022