To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Overview

Vision_Beyond_Limits_211672

Table Of Content

Problem Statement

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery. We are provided with post earthquake satellite imagery along with the GeoJSON file containing the extent of damage of each building. Our task is to take the images, detect and localise the buildings and then classify them based on the damage inflicted upon them.

Relevance

We need a satellite image classifier to inform about the disaster in order for the rescue teams to decide where to head first based on the damage assessed by our model and arrive at the more damaged localities and save as many lives as possible.


Methodology

UNET

  • U-net is an encoder-decoder deep learning model which is known to be used in medical images. It is first used in biomedical image segmentation. U-net contained three main blocks, down-sampling, up-sampling, and concatenation.
  • The important difference between U-net and other segmentation net is that U-net uses a totally different feature fusion method: concatenation. It concatenates the feature channel together to get a feature group. It could decrease the loss of features during convolution layers.
  • The U-Net architecture contains two paths: contraction path (also called as the encoder, The encoder part is used to capture the context in the image using convolutional layer) and expanding path (also called as the decoder, The decoder part is used to enable precise localization using transposed convolutions).
  • The main idea behind the U-Net is that during the training phase the first half which is the contracting path is responsible for producing the relevant information by minimising a cost function related to the operation desired and at the second half which is the expanding path the network it would be able to construct the output image.

RESNET50

  • ResNet stands for ‘Residual Network’. ResNet-50 is a convolutional neural network that is 50 layers deep.
  • Deep residual nets make use of residual blocks to improve the accuracy of the models. The concept of “skip connections,” which lies at the core of the residual blocks, is the strength of this type of neural network.

File Structure

 ┣ classification model
 ┃ ┣ damage_classification.py
 ┃ ┣ damage_inference.py
 ┃ ┣ model.py
 ┃ ┣ process_data.py
 ┃ ┗ process_data_inference.py
 ┣ spacenet
 ┃ ┣ inference
 ┃ ┃ ┗ inference.py
 ┃ ┗ src
 ┃ ┃ ┣ features
 ┃ ┃ ┃ ┣ build_labels.py
 ┃ ┃ ┃ ┣ compute_mean.py
 ┃ ┃ ┃ ┗ split_dataset.py
 ┃ ┃ ┗ models
 ┃ ┃ ┃ ┣ dataset.py
 ┃ ┃ ┃ ┣ evaluate_model.py
 ┃ ┃ ┃ ┣ segmentation.py
 ┃ ┃ ┃ ┣ segmentation_cpu.py
 ┃ ┃ ┃ ┣ tboard_logger.py
 ┃ ┃ ┃ ┣ tboard_logger_cpu.py
 ┃ ┃ ┃ ┣ train_model.py
 ┃ ┃ ┃ ┣ transforms.py
 ┃ ┃ ┃ ┗ unet.py
 ┣ utils
 ┃ ┣ combine_jsons.py
 ┃ ┣ data_finalize.sh
 ┃ ┣ inference.sh
 ┃ ┣ inference_image_output.py
 ┃ ┣ mask_polygons.py
 ┃ ┗ png_to_geotiff.py
 ┣ weights
 ┃ ┗ mean.npy
 ┣ Readme.md
 ┗ requirements.txt

Installation and Usage

  • Clone this git repo
git clone https://github.com/kwadhwa539/Vision_Beyond_Limits_211672.git

Environment Setup

  • During development we used Google colab.
  • Our minimum Python version is 3.6+, you can get it from here.
  • Once in your own virtual environment you can install the packages required to train and run the baseline model.
  • Before installing all dependencies run pip install numpy tensorflow for CPU-based machines or pip install numpy tensorflow-gpu && conda install cupy for GPU-based (CUDA) machines, as they are install-time dependencies for some other packages.
  • Finally, use the provided requirements.txt file for the remainder of the Python dependencies like so, pip install -r requirements.txt (make sure you are in the same environment as before)

Implementation

Localization Training

The flow of the model is as follows:-

  • Expansion Part:-

    1. Applying Convolution to the Input Image, starting with 32 features, kernel size 3x3 and stride 1 in first convolution.
    2. Applying BatchNormalization on convoluted layers and feeding the output to the next Convolution layer.
    3. Again applying another convolution to this normalised layer, but keeping kernel size 4x4 and stride 2.

    These 3 steps are repeated till we reach 1024 features, in the bottleneck layer.

  • Contraction Part:-

    1. Upsample(de-convolute) the preceding layer to halve the depth.
    2. Concatenating with the corresponding expansion layer.
    3. Applying Batch Normalization.

    In the last step, we convolute with a kernel size of 1x1, giving the output label of depth 1.

(loss function used in training:- softmax_crossentropy)

Below we will walk through the steps we have used for the localization training. First, we must create masks for the localization, and have the data in specific folders for the model to find and train itself. The steps we have built are described below:

  1. Run mask_polygons.py to generate a mask file for the chipped images.
  • Sample call: python mask_polygons.py --input /path/to/xBD --single-file --border 2
  • Here border refers to shrinking polygons by X number of pixels. This is to help the model separate buildings when there are a lot of "overlapping" or closely placed polygons.
  • Run python mask_polygons.py --help for the full description of the options.
  1. Run data_finalize.sh to setup the image and labels directory hierarchy that the spacenet model expects (it will also run compute_mean.py script to create a mean image that our model uses during training.
  • Sample call: data_finalize.sh -i /path/to/xBD/ -x /path/to/xView2/repo/root/dir/ -s .75
  • -s is a crude train/val split, the decimal you give will be the amount of the total data to assign to training, the rest to validation.
  • You can find this later in /path/to/xBD/spacenet_gt/dataSplit in text files, and easily change them after we have run the script.
  • Run data_finalize.sh for the full description of the options.
  1. After these steps have been run you will be ready for the instance segmentation training.
  • The original images and labels are preserved in the ./xBD/org/$DISASTER/ directories, and just copies the images to the spacenet_gt directory.

The main file is train_model.py and the options are below

A sample call we used is below(You must be in the ./spacenet/src/models/ directory to run the model):

$ python train_model.py /path/to/xBD/spacenet_gt/dataSet/ /path/to/xBD/spacenet_gt/images/ /path/to/xBD/spacenet_gt/labels/ -e 100

WARNING: If you have just ran the (or your own) localization model, be sure to clean up any localization specific directories (e.g. ./spacenet) before running the classification pipeline. This will interfere with the damage classification training calls as they only expect the original data to exist in directories separated by disaster name. You can use the split_into_disasters.py program if you have a directory of ./images and ./labels that need to be separated into disasters.

  1. You will need to run the process_data.py python script to extract the polygon images used for training, testing, and holdout from the original satellite images and the polygon labels produced by SpaceNet. This will generate a csv file with polygon UUID and damage type as well as extracting the actual polygons from the original satellite images. If the val_split_pct is defined, then you will get two csv files, one for test and one for train.

Damage Classification Training

  • In the final step we will be doing damage classification training on the provided training dataset. For this we have used ResNet-50 in integration with a typical U-Net.
  1. In order to optimise the model and increase the pixel accuracy, we first pre-process the given data by extracting the labelled polygon images, i.e. each unique building, using the polygon coordinates provided in the true label. This will give us 1000s of cropped images of the buildings.
  2. Then, by referring to the damage type, the model will train using UNet/ResNet architecture, which is as follows:-
    1. Applying 2D convolutions to the input image of (128,128,3) and max pooling the generated array. We do this for 3 layers.
    2. Then using the ResNet approach we concatenate the corresponding expansion array, and apply a Relu-Dense layer over it, starting with 2024 features to eventually give an array of original dimensions but with 4 features/classes(based on the damage type).
  • sample call:-
$ python damage_classification.py --train_data /path/to/XBD/$process_data_output_dir/train --train_csv train.csv --test_data /path/to/XBD/$process_data_output_dir/test --test_csv test.csv --model_out path/to/xBD/output-model --model_in /path/to/saved-model

Results

Sr. Metric Score
1. ACCURACY 0.81
1a. PIXEL ACCURACY 0.76
1b. MEAN CLASS ACCURACY 0.80
2. IOU 0.71
2a. MEAN IOU 0.56
3. PRECISION 0.51
4. RECALL 0.75

(On left, Ground truth image. On right, Predicted image.)

(epoch v/s accuracy)

(epoch v/s loss)


CONCLUSION

  • The above model achieves quite good accuracy in terms of localization of buildings from satellite imagery as well as classifying the damage suffered post disaster. It is very efficient in terms of time required to train the model and size of input dataset provided.
  • The optimum loss and best accuracy for localization training was achieved on 30 epochs. The various methods used such as data augmentation and different loss functions helped us to avoid overfitting the data.
  • Hence, this model will help to assess the post disaster damage, using the satellite imagery.
  • This challenge gave us a lot of insight on the satellite image, multi-classification problem. It made us realise the crucial need to utilise the advantages of deep learning to solve practical global issues such as post disaster damage assessment and much more.

Future Work

  • look for a better and efficient model
  • solve version-related issues in the code

Contributors

Acknowledgement

Resources

Back To The Top

Owner
Kunal Wadhwa
2nd Year Student at VJTI, Matunga Philomath : )
Kunal Wadhwa
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022