To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Overview

Vision_Beyond_Limits_211672

Table Of Content

Problem Statement

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery. We are provided with post earthquake satellite imagery along with the GeoJSON file containing the extent of damage of each building. Our task is to take the images, detect and localise the buildings and then classify them based on the damage inflicted upon them.

Relevance

We need a satellite image classifier to inform about the disaster in order for the rescue teams to decide where to head first based on the damage assessed by our model and arrive at the more damaged localities and save as many lives as possible.


Methodology

UNET

  • U-net is an encoder-decoder deep learning model which is known to be used in medical images. It is first used in biomedical image segmentation. U-net contained three main blocks, down-sampling, up-sampling, and concatenation.
  • The important difference between U-net and other segmentation net is that U-net uses a totally different feature fusion method: concatenation. It concatenates the feature channel together to get a feature group. It could decrease the loss of features during convolution layers.
  • The U-Net architecture contains two paths: contraction path (also called as the encoder, The encoder part is used to capture the context in the image using convolutional layer) and expanding path (also called as the decoder, The decoder part is used to enable precise localization using transposed convolutions).
  • The main idea behind the U-Net is that during the training phase the first half which is the contracting path is responsible for producing the relevant information by minimising a cost function related to the operation desired and at the second half which is the expanding path the network it would be able to construct the output image.

RESNET50

  • ResNet stands for ‘Residual Network’. ResNet-50 is a convolutional neural network that is 50 layers deep.
  • Deep residual nets make use of residual blocks to improve the accuracy of the models. The concept of “skip connections,” which lies at the core of the residual blocks, is the strength of this type of neural network.

File Structure

 ┣ classification model
 ┃ ┣ damage_classification.py
 ┃ ┣ damage_inference.py
 ┃ ┣ model.py
 ┃ ┣ process_data.py
 ┃ ┗ process_data_inference.py
 ┣ spacenet
 ┃ ┣ inference
 ┃ ┃ ┗ inference.py
 ┃ ┗ src
 ┃ ┃ ┣ features
 ┃ ┃ ┃ ┣ build_labels.py
 ┃ ┃ ┃ ┣ compute_mean.py
 ┃ ┃ ┃ ┗ split_dataset.py
 ┃ ┃ ┗ models
 ┃ ┃ ┃ ┣ dataset.py
 ┃ ┃ ┃ ┣ evaluate_model.py
 ┃ ┃ ┃ ┣ segmentation.py
 ┃ ┃ ┃ ┣ segmentation_cpu.py
 ┃ ┃ ┃ ┣ tboard_logger.py
 ┃ ┃ ┃ ┣ tboard_logger_cpu.py
 ┃ ┃ ┃ ┣ train_model.py
 ┃ ┃ ┃ ┣ transforms.py
 ┃ ┃ ┃ ┗ unet.py
 ┣ utils
 ┃ ┣ combine_jsons.py
 ┃ ┣ data_finalize.sh
 ┃ ┣ inference.sh
 ┃ ┣ inference_image_output.py
 ┃ ┣ mask_polygons.py
 ┃ ┗ png_to_geotiff.py
 ┣ weights
 ┃ ┗ mean.npy
 ┣ Readme.md
 ┗ requirements.txt

Installation and Usage

  • Clone this git repo
git clone https://github.com/kwadhwa539/Vision_Beyond_Limits_211672.git

Environment Setup

  • During development we used Google colab.
  • Our minimum Python version is 3.6+, you can get it from here.
  • Once in your own virtual environment you can install the packages required to train and run the baseline model.
  • Before installing all dependencies run pip install numpy tensorflow for CPU-based machines or pip install numpy tensorflow-gpu && conda install cupy for GPU-based (CUDA) machines, as they are install-time dependencies for some other packages.
  • Finally, use the provided requirements.txt file for the remainder of the Python dependencies like so, pip install -r requirements.txt (make sure you are in the same environment as before)

Implementation

Localization Training

The flow of the model is as follows:-

  • Expansion Part:-

    1. Applying Convolution to the Input Image, starting with 32 features, kernel size 3x3 and stride 1 in first convolution.
    2. Applying BatchNormalization on convoluted layers and feeding the output to the next Convolution layer.
    3. Again applying another convolution to this normalised layer, but keeping kernel size 4x4 and stride 2.

    These 3 steps are repeated till we reach 1024 features, in the bottleneck layer.

  • Contraction Part:-

    1. Upsample(de-convolute) the preceding layer to halve the depth.
    2. Concatenating with the corresponding expansion layer.
    3. Applying Batch Normalization.

    In the last step, we convolute with a kernel size of 1x1, giving the output label of depth 1.

(loss function used in training:- softmax_crossentropy)

Below we will walk through the steps we have used for the localization training. First, we must create masks for the localization, and have the data in specific folders for the model to find and train itself. The steps we have built are described below:

  1. Run mask_polygons.py to generate a mask file for the chipped images.
  • Sample call: python mask_polygons.py --input /path/to/xBD --single-file --border 2
  • Here border refers to shrinking polygons by X number of pixels. This is to help the model separate buildings when there are a lot of "overlapping" or closely placed polygons.
  • Run python mask_polygons.py --help for the full description of the options.
  1. Run data_finalize.sh to setup the image and labels directory hierarchy that the spacenet model expects (it will also run compute_mean.py script to create a mean image that our model uses during training.
  • Sample call: data_finalize.sh -i /path/to/xBD/ -x /path/to/xView2/repo/root/dir/ -s .75
  • -s is a crude train/val split, the decimal you give will be the amount of the total data to assign to training, the rest to validation.
  • You can find this later in /path/to/xBD/spacenet_gt/dataSplit in text files, and easily change them after we have run the script.
  • Run data_finalize.sh for the full description of the options.
  1. After these steps have been run you will be ready for the instance segmentation training.
  • The original images and labels are preserved in the ./xBD/org/$DISASTER/ directories, and just copies the images to the spacenet_gt directory.

The main file is train_model.py and the options are below

A sample call we used is below(You must be in the ./spacenet/src/models/ directory to run the model):

$ python train_model.py /path/to/xBD/spacenet_gt/dataSet/ /path/to/xBD/spacenet_gt/images/ /path/to/xBD/spacenet_gt/labels/ -e 100

WARNING: If you have just ran the (or your own) localization model, be sure to clean up any localization specific directories (e.g. ./spacenet) before running the classification pipeline. This will interfere with the damage classification training calls as they only expect the original data to exist in directories separated by disaster name. You can use the split_into_disasters.py program if you have a directory of ./images and ./labels that need to be separated into disasters.

  1. You will need to run the process_data.py python script to extract the polygon images used for training, testing, and holdout from the original satellite images and the polygon labels produced by SpaceNet. This will generate a csv file with polygon UUID and damage type as well as extracting the actual polygons from the original satellite images. If the val_split_pct is defined, then you will get two csv files, one for test and one for train.

Damage Classification Training

  • In the final step we will be doing damage classification training on the provided training dataset. For this we have used ResNet-50 in integration with a typical U-Net.
  1. In order to optimise the model and increase the pixel accuracy, we first pre-process the given data by extracting the labelled polygon images, i.e. each unique building, using the polygon coordinates provided in the true label. This will give us 1000s of cropped images of the buildings.
  2. Then, by referring to the damage type, the model will train using UNet/ResNet architecture, which is as follows:-
    1. Applying 2D convolutions to the input image of (128,128,3) and max pooling the generated array. We do this for 3 layers.
    2. Then using the ResNet approach we concatenate the corresponding expansion array, and apply a Relu-Dense layer over it, starting with 2024 features to eventually give an array of original dimensions but with 4 features/classes(based on the damage type).
  • sample call:-
$ python damage_classification.py --train_data /path/to/XBD/$process_data_output_dir/train --train_csv train.csv --test_data /path/to/XBD/$process_data_output_dir/test --test_csv test.csv --model_out path/to/xBD/output-model --model_in /path/to/saved-model

Results

Sr. Metric Score
1. ACCURACY 0.81
1a. PIXEL ACCURACY 0.76
1b. MEAN CLASS ACCURACY 0.80
2. IOU 0.71
2a. MEAN IOU 0.56
3. PRECISION 0.51
4. RECALL 0.75

(On left, Ground truth image. On right, Predicted image.)

(epoch v/s accuracy)

(epoch v/s loss)


CONCLUSION

  • The above model achieves quite good accuracy in terms of localization of buildings from satellite imagery as well as classifying the damage suffered post disaster. It is very efficient in terms of time required to train the model and size of input dataset provided.
  • The optimum loss and best accuracy for localization training was achieved on 30 epochs. The various methods used such as data augmentation and different loss functions helped us to avoid overfitting the data.
  • Hence, this model will help to assess the post disaster damage, using the satellite imagery.
  • This challenge gave us a lot of insight on the satellite image, multi-classification problem. It made us realise the crucial need to utilise the advantages of deep learning to solve practical global issues such as post disaster damage assessment and much more.

Future Work

  • look for a better and efficient model
  • solve version-related issues in the code

Contributors

Acknowledgement

Resources

Back To The Top

Owner
Kunal Wadhwa
2nd Year Student at VJTI, Matunga Philomath : )
Kunal Wadhwa
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022