The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Overview

Motion Compensated Pulse Rate Estimation

Overview

This project has 2 main parts.

  1. Develop a Pulse Rate Algorithm on the given training data. Then Test Your Algorithm and see that it has met the success criteria.
  2. Apply the Pulse Rate Algorithm on a Clinical Application and compute more clinically meaningful features and discover healthcare trends.

Part 1: Pulse Rate Algorithm

Introduction

A core feature that many users expect from their wearable devices is pulse rate estimation. Continuous pulse rate estimation can be informative for many aspects of a wearer's health. Pulse rate during exercise can be a measure of workout intensity and resting heart rate is sometimes used as an overall measure of cardiovascular fitness. In this project you will create a pulse rate estimation algorithm for a wrist-wearable device. Use the information in the Physiological Mechanics of Pulse Rate Estimation section below to inform the design of your algorithm. Make sure that your algorithm conforms to the given Algorithm Specifications in the following concept, Part 1: Overview & Instructions.

Background

Physiological Mechanics of Pulse Rate Estimation

Pulse rate is typically estimated by using the PPG sensor. When the ventricles contract, the capillaries in the wrist fill with blood. The (typically green) light emitted by the PPG sensor is absorbed by red blood cells in these capillaries and the photodetector will see the drop in reflected light. When the blood returns to the heart, fewer red blood cells in the wrist absorb the light and the photodetector sees an increase in reflected light. The period of this oscillating waveform is the pulse rate.

PPG Sensor on Blood Flow

However, the heart beating is not the only phenomenon that modulates the PPG signal. Blood in the wrist is fluid, and arm movement will cause the blood to move correspondingly. During exercise, like walking or running, we see another periodic signal in the PPG due to this arm motion. Our pulse rate estimator has to be careful not to confuse this periodic signal with the pulse rate.

We can use the accelerometer signal of our wearable device to help us keep track of which periodic signal is caused by motion. Because the accelerometer is only sensing arm motion, any periodic signal in the accelerometer is likely not due to the heart beating, and only due to the arm motion. If our pulse rate estimator is picking a frequency that's strong in the accelerometer, it may be making a mistake.

All estimators will have some amount of error. How much error is tolerable depends on the application. If we were using these pulse rate estimates to compute long term trends over months, then we may be more robust to higher error variance. However, if we wanted to give information back to the user about a specific workout or night of sleep, we would require a much lower error.

Algorithm Confidence and Availability

Many machine learning algorithms produce outputs that can be used to estimate their per-result error. For example, in logistic regression, you can use the predicted class probabilities to quantify trust in the classification. A classification where one class has a very high probability is probably more accurate than one where all classes have similar probabilities. Certainly, this method is not perfect and won't perfectly rank-order estimates based on error. But if accurate enough, it allows consumers of the algorithm more flexibility in how to use it. We call this estimation of the algorithm's error the confidence.

In pulse rate estimation, having a confidence value can be useful if a user wants just a handful of high-quality pulse rate estimate per night. They can use the confidence algorithm to select the 20 most confident estimates at night and ignore the rest of the outputs. Confidence estimates can also be used to set the point on the error curve that we want to operate at by sacrificing the number of estimates that are considered valid. There is a trade-off between availability and error. For example, if we want to operate at 10% availability, we look at our training dataset to determine the confidence threshold for which 10% of the estimates pass. Then if only if an estimate's confidence value is above that threshold, do we consider it valid. See the error vs. availability curve below.

This plot is created by computing the mean absolute error at all -- or at least 100 of -- the confidence thresholds in the dataset.

Building a confidence algorithm for pulse rate estimation is a little tricker than logistic regression because intuitively, there isn't some transformation of the algorithm output that can make a good confidence score. However, by understanding our algorithm behavior, we can come up with some general ideas that might create a good confidence algorithm. For example, if our algorithm is picking a strong frequency component that's not present in the accelerometer, we can be relatively confident in the estimate. Turn this idea into an algorithm by quantifying "strong frequency component".

Part 2: Clinical Application

Now that you have built your pulse rate algorithm and tested your algorithm to know it works, we can use it to compute more clinically meaningful features and discover healthcare trends.

Specifically, you will use 24 hours of heart rate data from 1500 samples to try to validate the well-known trend that average resting heart rate increases up until middle age and then decreases into old age. We'll also see if resting heart rates are higher for women than men. See the trend illustrated in this image:

Follow the steps in the notebook to reproduce this result!

Dataset (CAST)

The data from this project comes from the Cardiac Arrhythmia Suppression Trial (CAST), which was sponsored by the National Heart, Lung, and Blood Institute (NHLBI). CAST collected 24 hours of heart rate data from ECGs from people who have had a myocardial infarction (MI) within the past two years.[1] This data has been smoothed and resampled to more closely resemble PPG-derived pulse rate data from a wrist wearable.[2]

  1. CAST RR Interval Sub-Study Database Citation - Stein PK, Domitrovich PP, Kleiger RE, Schechtman KB, Rottman JN. Clinical and demographic determinants of heart rate variability in patients post-myocardial infarction: insights from the Cardiac Arrhythmia Suppression Trial (CAST). Clin Cardiol 23(3):187-94; 2000 (Mar)
  2. Physionet Citation - Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals (2003). Circulation. 101(23):e215-e220.
Owner
Omar Laham
Bioinformatician and Healthcare AI Engineer
Omar Laham
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023