The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Overview

Motion Compensated Pulse Rate Estimation

Overview

This project has 2 main parts.

  1. Develop a Pulse Rate Algorithm on the given training data. Then Test Your Algorithm and see that it has met the success criteria.
  2. Apply the Pulse Rate Algorithm on a Clinical Application and compute more clinically meaningful features and discover healthcare trends.

Part 1: Pulse Rate Algorithm

Introduction

A core feature that many users expect from their wearable devices is pulse rate estimation. Continuous pulse rate estimation can be informative for many aspects of a wearer's health. Pulse rate during exercise can be a measure of workout intensity and resting heart rate is sometimes used as an overall measure of cardiovascular fitness. In this project you will create a pulse rate estimation algorithm for a wrist-wearable device. Use the information in the Physiological Mechanics of Pulse Rate Estimation section below to inform the design of your algorithm. Make sure that your algorithm conforms to the given Algorithm Specifications in the following concept, Part 1: Overview & Instructions.

Background

Physiological Mechanics of Pulse Rate Estimation

Pulse rate is typically estimated by using the PPG sensor. When the ventricles contract, the capillaries in the wrist fill with blood. The (typically green) light emitted by the PPG sensor is absorbed by red blood cells in these capillaries and the photodetector will see the drop in reflected light. When the blood returns to the heart, fewer red blood cells in the wrist absorb the light and the photodetector sees an increase in reflected light. The period of this oscillating waveform is the pulse rate.

PPG Sensor on Blood Flow

However, the heart beating is not the only phenomenon that modulates the PPG signal. Blood in the wrist is fluid, and arm movement will cause the blood to move correspondingly. During exercise, like walking or running, we see another periodic signal in the PPG due to this arm motion. Our pulse rate estimator has to be careful not to confuse this periodic signal with the pulse rate.

We can use the accelerometer signal of our wearable device to help us keep track of which periodic signal is caused by motion. Because the accelerometer is only sensing arm motion, any periodic signal in the accelerometer is likely not due to the heart beating, and only due to the arm motion. If our pulse rate estimator is picking a frequency that's strong in the accelerometer, it may be making a mistake.

All estimators will have some amount of error. How much error is tolerable depends on the application. If we were using these pulse rate estimates to compute long term trends over months, then we may be more robust to higher error variance. However, if we wanted to give information back to the user about a specific workout or night of sleep, we would require a much lower error.

Algorithm Confidence and Availability

Many machine learning algorithms produce outputs that can be used to estimate their per-result error. For example, in logistic regression, you can use the predicted class probabilities to quantify trust in the classification. A classification where one class has a very high probability is probably more accurate than one where all classes have similar probabilities. Certainly, this method is not perfect and won't perfectly rank-order estimates based on error. But if accurate enough, it allows consumers of the algorithm more flexibility in how to use it. We call this estimation of the algorithm's error the confidence.

In pulse rate estimation, having a confidence value can be useful if a user wants just a handful of high-quality pulse rate estimate per night. They can use the confidence algorithm to select the 20 most confident estimates at night and ignore the rest of the outputs. Confidence estimates can also be used to set the point on the error curve that we want to operate at by sacrificing the number of estimates that are considered valid. There is a trade-off between availability and error. For example, if we want to operate at 10% availability, we look at our training dataset to determine the confidence threshold for which 10% of the estimates pass. Then if only if an estimate's confidence value is above that threshold, do we consider it valid. See the error vs. availability curve below.

This plot is created by computing the mean absolute error at all -- or at least 100 of -- the confidence thresholds in the dataset.

Building a confidence algorithm for pulse rate estimation is a little tricker than logistic regression because intuitively, there isn't some transformation of the algorithm output that can make a good confidence score. However, by understanding our algorithm behavior, we can come up with some general ideas that might create a good confidence algorithm. For example, if our algorithm is picking a strong frequency component that's not present in the accelerometer, we can be relatively confident in the estimate. Turn this idea into an algorithm by quantifying "strong frequency component".

Part 2: Clinical Application

Now that you have built your pulse rate algorithm and tested your algorithm to know it works, we can use it to compute more clinically meaningful features and discover healthcare trends.

Specifically, you will use 24 hours of heart rate data from 1500 samples to try to validate the well-known trend that average resting heart rate increases up until middle age and then decreases into old age. We'll also see if resting heart rates are higher for women than men. See the trend illustrated in this image:

Follow the steps in the notebook to reproduce this result!

Dataset (CAST)

The data from this project comes from the Cardiac Arrhythmia Suppression Trial (CAST), which was sponsored by the National Heart, Lung, and Blood Institute (NHLBI). CAST collected 24 hours of heart rate data from ECGs from people who have had a myocardial infarction (MI) within the past two years.[1] This data has been smoothed and resampled to more closely resemble PPG-derived pulse rate data from a wrist wearable.[2]

  1. CAST RR Interval Sub-Study Database Citation - Stein PK, Domitrovich PP, Kleiger RE, Schechtman KB, Rottman JN. Clinical and demographic determinants of heart rate variability in patients post-myocardial infarction: insights from the Cardiac Arrhythmia Suppression Trial (CAST). Clin Cardiol 23(3):187-94; 2000 (Mar)
  2. Physionet Citation - Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals (2003). Circulation. 101(23):e215-e220.
Owner
Omar Laham
Bioinformatician and Healthcare AI Engineer
Omar Laham
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022