A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

Overview

SimGNN

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019).

Abstract

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to sup plement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.

This repository provides a PyTorch implementation of SimGNN as described in the paper:

SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang. WSDM, 2019. [Paper]

A reference Tensorflow implementation is accessible [here] and another implementation is [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0

Datasets

The code takes pairs of graphs for training from an input folder where each pair of graph is stored as a JSON. Pairs of graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]],
 "graph_2":  [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]],
 "labels_1": [2, 2, 2, 2],
 "labels_2": [2, 3, 2, 2, 2],
 "ged": 1}

The **graph_1** and **graph_2** keys have edge list values which descibe the connectivity structure. Similarly, the **labels_1** and **labels_2** keys have labels for each node which are stored as list - positions in the list correspond to node identifiers. The **ged** key has an integer value which is the raw graph edit distance for the pair of graphs.

Options

Training a SimGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.

Model options

  --filters-1             INT         Number of filter in 1st GCN layer.       Default is 128.
  --filters-2             INT         Number of filter in 2nd GCN layer.       Default is 64. 
  --filters-3             INT         Number of filter in 3rd GCN layer.       Default is 32.
  --tensor-neurons        INT         Neurons in tensor network layer.         Default is 16.
  --bottle-neck-neurons   INT         Bottle neck layer neurons.               Default is 16.
  --bins                  INT         Number of histogram bins.                Default is 16.
  --batch-size            INT         Number of pairs processed per batch.     Default is 128. 
  --epochs                INT         Number of SimGNN training epochs.        Default is 5.
  --dropout               FLOAT       Dropout rate.                            Default is 0.5.
  --learning-rate         FLOAT       Learning rate.                           Default is 0.001.
  --weight-decay          FLOAT       Weight decay.                            Default is 10^-5.
  --histogram             BOOL        Include histogram features.              Default is False.

Examples

The following commands learn a neural network and score on the test set. Training a SimGNN model on the default dataset.

python src/main.py

Training a SimGNN model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Training a SimGNN with histogram features.

python src/main.py --histogram

Training a SimGNN with histogram features and a large bin number.

python src/main.py --histogram --bins 32

Increasing the learning rate and the dropout.

python src/main.py --learning-rate 0.01 --dropout 0.9

You can save the trained model by adding the --save-path parameter.

python src/main.py --save-path /path/to/model-name

Then you can load a pretrained model using the --load-path parameter; note that the model will be used as-is, no training will be performed.

python src/main.py --load-path /path/to/model-name

License

Comments
  • Model test error is too high

    Model test error is too high

    I'm sorry to bother you.But when I tried to replicate your work,I ran into some difficulties. Here is the problem I met:

    python src/main.py +---------------------+------------------+ | Batch size | 128 | +=====================+==================+ | Bins | 16 | +---------------------+------------------+ | Bottle neck neurons | 16 | +---------------------+------------------+ | Dropout | 0.500 | +---------------------+------------------+ | Epochs | 5 | +---------------------+------------------+ | Filters 1 | 128 | +---------------------+------------------+ | Filters 2 | 64 | +---------------------+------------------+ | Filters 3 | 32 | +---------------------+------------------+ | Histogram | 0 | +---------------------+------------------+ | Learning rate | 0.001 | +---------------------+------------------+ | Tensor neurons | 16 | +---------------------+------------------+ | Testing graphs | ./dataset/test/ | +---------------------+------------------+ | Training graphs | ./dataset/train/ | +---------------------+------------------+ | Weight decay | 0.001 | +---------------------+------------------+

    Enumerating unique labels.

    100%|██████████████████████████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 2533.57it/s]

    Model training.

    Epoch: 0%| | 0/5 [00:00<?, ?it/s] /home/jovyan/SimGNN/src/simgnn.py:212: UserWarning: Using a target size (torch.Size([1, 1])) that is different to the input size (torch.Size([1])). This will likely lead to incorrect results due to broadcasting. Please ensure they havethe same size. losses = losses + torch.nn.functional.mse_loss(data["target"], prediction) Epoch (Loss=3.87038): 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.23s/it] Batches: 100%|███████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.68s/it]

    Model evaluation.

    100%|█████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 102.39it/s]

    Baseline error: 0.41597.

    Model test error: 0.94024.

    I found the model test error too high! The only thing I changed was the version of the libraries,which I replaced with the latest. Could you help me with this problem?

    opened by Alice314 7
  • About dataset

    About dataset

    I am really interested in this amazing work, but I don't understand how datasets are generated (or processed), or are training data and test data generated from public data sets (just like Linux, AIDS, mentioned in the paper)? I desire to know how syngen.py works and the output of this function.

    Thanks a lot.

    opened by BenedictWongBJUT 6
  • Extracting Latent Space

    Extracting Latent Space

    How would you recommend we approach creating network embeddings (entire network is single point/vector) using this library?

    I was thinking of modifying the forward pass to output similarity and running MDS on the similarity matrix if I'm doing all vs all on the test set.

    I am hoping to compare a couple hundred generated graphs via ERGM and latent ERGM as well as other network approaches to the original graph and output an embedding of all of the graphs.

    Please let me know your recommendations before this becomes a time sink, else, I can find a way to hack it. Thanks!

    opened by jlevy44 4
  • Questions about the model.

    Questions about the model.

    Sorry for using this section to ask technical question rather than code-wise. Had a few questions.

    • Do you have the pretrained model on any of the dataset (like IMDB) the paper talks about? The size of sample in the github dataset is small.
    • Am I right that there is no early stopping in the model? As there is no validation set. [the reason I am asking this question is as I use a bigger dataset, with higher number of epochs, most of the ged predicted values are around 1]
    opened by BehroozMansouri 3
  • Error adapting code

    Error adapting code

    Hey! I am facing some issues adapting your SimGNN code into my graph dataset. I keep encountering an error that says:

    RuntimeError: Invalid index in scatterAdd at ../aten/src/TH/generic/THTensorEvenMoreMath.cpp:520

    I even tried to change one of the training JSON files to the example of the labels and graph structure you gave. I also see a warning about size.

    Am I missing something? Any help would be greatly appreciated.

    opened by kalkidann 3
  • Notice on package versions

    Notice on package versions

    Hello,

    Trying (with some struggle unfortunately) to get this to run, I noticed that the requirements' package versions in the README file are different to some package versions in the requirements.txt.

    You may want to check that out.

    Best.

    opened by Chuhtra 2
  • Performance of SimGNN

    Performance of SimGNN

    Hi @benedekrozemberczki

    We recently used this implementation of SimGNN and noticed that the performance does not match to the one that is outlined in the paper. In particular, for AIDS dataset we get an order of magnitude higher MSE that in the original paper. Did you verify that this implementation match the performance of the paper?

    P.S. we also benchmarked the orignal repo of SimGNN and noticed that it produces slightly better results, even though it's very long to run until convergence.

    opened by nd7141 2
  • Visualizing Attention

    Visualizing Attention

    Hi, I want to visualize the attention with respect to the input graph (like Figure 5 in the paper). Can you please guide me how to visualize the attention weight with the input graphs?

    opened by sajjadriaj 2
  • Add ability to save and load a trained model

    Add ability to save and load a trained model

    To achieve repeatable results, it was also necessary to keep the label in fixed order, so that the resulting one-hot encoding vectors are the same across different runs.

    Explanation of this feature has been added to the README.

    opened by Carlovan 1
  • Batch processing required.

    Batch processing required.

    Hi.

    Is there a version of the code where we can send batched data into the model? Current version works on one graph pair at a time. This is taking too long for larger training data with each data point being fed one at a time into the model via for loop.

    Thanks.

    opened by Indradyumna 1
  • Import error for scatter_cuda

    Import error for scatter_cuda

    Hi there,

    I am having a “no module named touchy_scatter .scatter_cuda” import error. I am sure I have the necessary toolkits and driver installed.

    Does the code require a GPU environment?

    opened by jonathan-goh 1
  • Error in the example from readme

    Error in the example from readme

    In the example in the repo: {"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]], "graph_2": [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]], "labels_1": [2, 2, 2, 2], "labels_2": [2, 3, 2, 2, 2], "ged": 1} I think there is a label missing in labels_1. Also the ged for the example is 2 if we consider the missing label is 2. Am I missing smth?

    opened by merascu 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022