A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

Overview

SimGNN

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019).

Abstract

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to sup plement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.

This repository provides a PyTorch implementation of SimGNN as described in the paper:

SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang. WSDM, 2019. [Paper]

A reference Tensorflow implementation is accessible [here] and another implementation is [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0

Datasets

The code takes pairs of graphs for training from an input folder where each pair of graph is stored as a JSON. Pairs of graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]],
 "graph_2":  [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]],
 "labels_1": [2, 2, 2, 2],
 "labels_2": [2, 3, 2, 2, 2],
 "ged": 1}

The **graph_1** and **graph_2** keys have edge list values which descibe the connectivity structure. Similarly, the **labels_1** and **labels_2** keys have labels for each node which are stored as list - positions in the list correspond to node identifiers. The **ged** key has an integer value which is the raw graph edit distance for the pair of graphs.

Options

Training a SimGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.

Model options

  --filters-1             INT         Number of filter in 1st GCN layer.       Default is 128.
  --filters-2             INT         Number of filter in 2nd GCN layer.       Default is 64. 
  --filters-3             INT         Number of filter in 3rd GCN layer.       Default is 32.
  --tensor-neurons        INT         Neurons in tensor network layer.         Default is 16.
  --bottle-neck-neurons   INT         Bottle neck layer neurons.               Default is 16.
  --bins                  INT         Number of histogram bins.                Default is 16.
  --batch-size            INT         Number of pairs processed per batch.     Default is 128. 
  --epochs                INT         Number of SimGNN training epochs.        Default is 5.
  --dropout               FLOAT       Dropout rate.                            Default is 0.5.
  --learning-rate         FLOAT       Learning rate.                           Default is 0.001.
  --weight-decay          FLOAT       Weight decay.                            Default is 10^-5.
  --histogram             BOOL        Include histogram features.              Default is False.

Examples

The following commands learn a neural network and score on the test set. Training a SimGNN model on the default dataset.

python src/main.py

Training a SimGNN model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Training a SimGNN with histogram features.

python src/main.py --histogram

Training a SimGNN with histogram features and a large bin number.

python src/main.py --histogram --bins 32

Increasing the learning rate and the dropout.

python src/main.py --learning-rate 0.01 --dropout 0.9

You can save the trained model by adding the --save-path parameter.

python src/main.py --save-path /path/to/model-name

Then you can load a pretrained model using the --load-path parameter; note that the model will be used as-is, no training will be performed.

python src/main.py --load-path /path/to/model-name

License

Comments
  • Model test error is too high

    Model test error is too high

    I'm sorry to bother you.But when I tried to replicate your work,I ran into some difficulties. Here is the problem I met:

    python src/main.py +---------------------+------------------+ | Batch size | 128 | +=====================+==================+ | Bins | 16 | +---------------------+------------------+ | Bottle neck neurons | 16 | +---------------------+------------------+ | Dropout | 0.500 | +---------------------+------------------+ | Epochs | 5 | +---------------------+------------------+ | Filters 1 | 128 | +---------------------+------------------+ | Filters 2 | 64 | +---------------------+------------------+ | Filters 3 | 32 | +---------------------+------------------+ | Histogram | 0 | +---------------------+------------------+ | Learning rate | 0.001 | +---------------------+------------------+ | Tensor neurons | 16 | +---------------------+------------------+ | Testing graphs | ./dataset/test/ | +---------------------+------------------+ | Training graphs | ./dataset/train/ | +---------------------+------------------+ | Weight decay | 0.001 | +---------------------+------------------+

    Enumerating unique labels.

    100%|██████████████████████████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 2533.57it/s]

    Model training.

    Epoch: 0%| | 0/5 [00:00<?, ?it/s] /home/jovyan/SimGNN/src/simgnn.py:212: UserWarning: Using a target size (torch.Size([1, 1])) that is different to the input size (torch.Size([1])). This will likely lead to incorrect results due to broadcasting. Please ensure they havethe same size. losses = losses + torch.nn.functional.mse_loss(data["target"], prediction) Epoch (Loss=3.87038): 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.23s/it] Batches: 100%|███████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.68s/it]

    Model evaluation.

    100%|█████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 102.39it/s]

    Baseline error: 0.41597.

    Model test error: 0.94024.

    I found the model test error too high! The only thing I changed was the version of the libraries,which I replaced with the latest. Could you help me with this problem?

    opened by Alice314 7
  • About dataset

    About dataset

    I am really interested in this amazing work, but I don't understand how datasets are generated (or processed), or are training data and test data generated from public data sets (just like Linux, AIDS, mentioned in the paper)? I desire to know how syngen.py works and the output of this function.

    Thanks a lot.

    opened by BenedictWongBJUT 6
  • Extracting Latent Space

    Extracting Latent Space

    How would you recommend we approach creating network embeddings (entire network is single point/vector) using this library?

    I was thinking of modifying the forward pass to output similarity and running MDS on the similarity matrix if I'm doing all vs all on the test set.

    I am hoping to compare a couple hundred generated graphs via ERGM and latent ERGM as well as other network approaches to the original graph and output an embedding of all of the graphs.

    Please let me know your recommendations before this becomes a time sink, else, I can find a way to hack it. Thanks!

    opened by jlevy44 4
  • Questions about the model.

    Questions about the model.

    Sorry for using this section to ask technical question rather than code-wise. Had a few questions.

    • Do you have the pretrained model on any of the dataset (like IMDB) the paper talks about? The size of sample in the github dataset is small.
    • Am I right that there is no early stopping in the model? As there is no validation set. [the reason I am asking this question is as I use a bigger dataset, with higher number of epochs, most of the ged predicted values are around 1]
    opened by BehroozMansouri 3
  • Error adapting code

    Error adapting code

    Hey! I am facing some issues adapting your SimGNN code into my graph dataset. I keep encountering an error that says:

    RuntimeError: Invalid index in scatterAdd at ../aten/src/TH/generic/THTensorEvenMoreMath.cpp:520

    I even tried to change one of the training JSON files to the example of the labels and graph structure you gave. I also see a warning about size.

    Am I missing something? Any help would be greatly appreciated.

    opened by kalkidann 3
  • Notice on package versions

    Notice on package versions

    Hello,

    Trying (with some struggle unfortunately) to get this to run, I noticed that the requirements' package versions in the README file are different to some package versions in the requirements.txt.

    You may want to check that out.

    Best.

    opened by Chuhtra 2
  • Performance of SimGNN

    Performance of SimGNN

    Hi @benedekrozemberczki

    We recently used this implementation of SimGNN and noticed that the performance does not match to the one that is outlined in the paper. In particular, for AIDS dataset we get an order of magnitude higher MSE that in the original paper. Did you verify that this implementation match the performance of the paper?

    P.S. we also benchmarked the orignal repo of SimGNN and noticed that it produces slightly better results, even though it's very long to run until convergence.

    opened by nd7141 2
  • Visualizing Attention

    Visualizing Attention

    Hi, I want to visualize the attention with respect to the input graph (like Figure 5 in the paper). Can you please guide me how to visualize the attention weight with the input graphs?

    opened by sajjadriaj 2
  • Add ability to save and load a trained model

    Add ability to save and load a trained model

    To achieve repeatable results, it was also necessary to keep the label in fixed order, so that the resulting one-hot encoding vectors are the same across different runs.

    Explanation of this feature has been added to the README.

    opened by Carlovan 1
  • Batch processing required.

    Batch processing required.

    Hi.

    Is there a version of the code where we can send batched data into the model? Current version works on one graph pair at a time. This is taking too long for larger training data with each data point being fed one at a time into the model via for loop.

    Thanks.

    opened by Indradyumna 1
  • Import error for scatter_cuda

    Import error for scatter_cuda

    Hi there,

    I am having a “no module named touchy_scatter .scatter_cuda” import error. I am sure I have the necessary toolkits and driver installed.

    Does the code require a GPU environment?

    opened by jonathan-goh 1
  • Error in the example from readme

    Error in the example from readme

    In the example in the repo: {"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]], "graph_2": [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]], "labels_1": [2, 2, 2, 2], "labels_2": [2, 3, 2, 2, 2], "ged": 1} I think there is a label missing in labels_1. Also the ged for the example is 2 if we consider the missing label is 2. Am I missing smth?

    opened by merascu 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022