Official PyTorch Implementation of SSMix (Findings of ACL 2021)

Related tags

Deep Learningssmix
Overview

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021)

Official PyTorch Implementation of SSMix | Paper


SSMix

Abstract

Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we propose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on the wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification.

Code Structure

|__ augmentation/ --> augmentation methods by method type
    |__ __init__.py --> wrapper for all augmentation methods. Contains metric used for single & paired sentence tasks
    |__ saliency.py --> Calculates saliency by L2 norm gradient backpropagation
    |__ ssmix.py --> Output ssmix sentence with options such as no span and no saliency given two input sentence with additional information
    |__ unk.py --> Output randomly replaced unk sentence 
|__ read_data/ --> Module used for loading data
    |__ __init__.py --> wrapper function for getting data split by train and valid depending on dataset type
    |__  dataset.py --> Class to get NLU dataset
    |__ preprocess.py --> preprocessor that makes input, label, and accuracy metric depending on dataset type
|__ trainer.py --> Code that does actual training 
|__ run_train.py --> Load hyperparameter, initiate training, pipeline
|__ classifiation_model.py -> Augmented from huggingface modeling_bert.py. Define BERT architectures that can handle multiple inputs for Tmix

Part of code is modified from the MixText implementation.

Getting Started

pip install -r requirements.txt

Code is runnable on both CPU and GPU, but we highly recommended to run on GPU. Strictly following the versions specified in the requirements.txt file is desirable to sucessfully execute our code without errors.

Model Training

python run_train.py --batch_size ${BSZ} --seed ${SEED} --dataset {DATASET} --optimizer_lr ${LR} ${MODE}

For all our experiments, we use 32 as the batch size (BSZ), and perform five different runs by changing the seed (SEED) from 0 to 4. We experiment on a wide range of text classifiction datasets (DATASET): 'sst2', 'qqp', 'mnli', 'qnli', 'rte', 'mrpc', 'trec-coarse', 'trec-fine', 'anli'. You should set --anli_round argument to one of 1, 2, 3 for the ANLI dataset.

Once you run the code, trained checkpoints are created under checkpoints directory. To train a model without mixup, you have to set MODE to 'normal'. To run with mixup approaches including our SSMix, you should set MODE as the name of the mixup method ('ssmix', 'tmix', 'embedmix', 'unk'). We load the checkpoint trained without mixup before training with mixup. We use 5e-5 for the normal mode and 1e-5 for mixup methods as the learning rate (LR).

You can modify the argument values (e.g., embed_alpha, hidden_alpha, etc) to adjust to your training hyperparameter needs. For ablation study of SSMix, you can exclude salieny constraint (--ss_no_saliency) or span constraint (--ss_no_span). Type python run_train.py --help or check run_train.py to see the full list of available hyperparameters. For debugging or analysis, you can turn on verbose options (--verbose and --verbose_show_augment_example).

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022