Reproducing Results from A Hybrid Approach to Targeting Social Assistance

Overview
title author date output
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
Lendie Follett and Heath Henderson
12/28/2021
html_document

Introduction

This repository contains the code and data required to reproduce the results found in "A Hybrid Approach to Targeting Social Assistance". Specifically, to run simulation studies that estimate out of sample error rates using the Hybrid, Hybrid-AI, Hybrid-EC, and Hybrid-DU models on data from Indonesia (Alatas et al. (2012)) and Burkina Faso (Hillebrecht et al. (2020)).

Requirements

To install the required R packages, run the following code in R:

install.packages(c("truncnorm", "mvtnorm", "LaplacesDemon", "MASS", "dplyr",
                   "ggplot2", "Rcpp", "reshape2", "caret", "parallel"))

Data

We use two sources of data containing community based rankings, survey information, and consumption/expenditure data. This data can be found in the following sub-directories:

list.files("Data/Burkina Faso/Cleaning/")
## [1] "cleaning.do"              "hillebrecht.csv"          "hillebrecht.dta"         
## [4] "hillebrecht(missing).csv" "hillebrecht(missing).dta" "variables.csv"
list.files("Data/Indonesia/Cleaning/")
##  [1] "alatas.csv"                               
##  [2] "alatas.dta"                               
##  [3] "alatas(missing).csv"                      
##  [4] "alatas(missing).dta"                      
##  [5] "cleaning.do"                              
##  [6] "FAO Dietary Diversity Guidelines 2011.pdf"
##  [7] "food.dta"                                 
##  [8] "notes.docx"                               
##  [9] "ranks.dta"                                
## [10] "variables.csv"                            
## [11] "xvars.dta"

The data files that will be called are "hillebrecht.csv" and "alatas.csv".

Reproduce

  1. Run run_simulations.R to reproduce error rate results and coefficient estimate results.
  • Indonesia Analysis/all_results.csv
  • Indonesia Analysis/all_coef.csv
  • Indonesia Analysis/coef_total_sample.csv
  • Indonesia Analysis/CB_beta_rank_CI_noelite.csv
  • Indonesia Analysis/CB_beta_rank_CI.csv
  • Burkina Faso Analysis/all_results.csv
  • Burkina Faso Analysis/all_coef.csv
  • Burkina Faso Analysis/coef_total_sample.csv
  • Burkina Faso Analysis/CB_beta_rank_CI_noelite.csv
  • Burkina Faso Analysis/CB_beta_rank_CI.csv

The above files can be used to generate plots found in the manuscript:

  1. Run Burkina Faso Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Burkina Faso data.
  • Burkina Faso Analysis/coef_score_EC_hillebrecht.pdf
  • Burkina Faso Analysis/coef_score_hillebrecht.pdf (Figure 1)
  • Burkina Faso Analysis/ER_hybrid_AI.pdf (Figure 7 a)
  • Burkina Faso Analysis/ER_hybrid_DU.pdf (Figure 8)
  • Burkina Faso Analysis/ER_hybrid.pdf (Figure 3 a)
  1. Run Indonesia Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Indonesia data.
  • Indonesia Analysis/coef_score_EC_hillebrecht.pdf (Figure 5)
  • Indonesia Analysis/coef_score_hillebrecht.pdf (Figure 2)
  • Indonesia Analysis/ER_hybrid_AI.pdf (Figure 7 b)
  • Indonesia Analysis/ER_hybrid_EC.pdf (Figure 6)
  • Indonesia Analysis/ER_hybrid.pdf (Figure 3 b)
  1. Run Burkina Faso Analysis/run_mcmc_weights.R to reproduce heterogeneous ranker results.
  • Burkina Faso Analysis/heter_weights_omega.pdf (Figure 4 a)
  • Burkina Faso Analysis/heter_weights_corr.pdf (Figure 4 b)

References

Alatas, V., Banerjee, A., Hanna, R., Olken, B., and Tobias, J. (2013).Targeting the poor: Evidence from a field experiment in Indonesia.Harvard Dataverse,https://doi.org/10.7910/DVN/M7SKQZ, V5.

Hillebrecht, M., Klonner, S., Pacere, N. A., and Souares, A. (2020b). Community-basedversus statistical targeting of anti-poverty programs: Evidence from Burkina Faso.Journalof African Economies, 29(3):271–305

Owner
Lendie Follett
Lendie Follett
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023